Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cytogenet Genome Res ; 163(3-4): 154-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37573786

RESUMEN

Radioiodine (131I) is widely used in the treatment of hyperthyroidism and as an effective ablative therapy for differentiated thyroid cancer. Radioiodine (131I) constitutes 90% of the currently used therapies in the field of nuclear medicine. Here, we report the cytogenetic findings of a long-term follow-up study of 27 years on a male patient who received two rounds of radioiodine treatment within a span of 26 months between 1992 and 1994 for his papillary thyroid cancer. A comprehensive cytogenetic follow-up study utilizing cytokinesis blocked micronucleus assay, dicentric chromosome assay, genome wide translocations and inversions was initiated on this patient since the first administration of radioiodine in 1992. Frequencies of micronuclei (0.006/cell) and dicentric chromosomes (0.008/cell) detected in the current study were grossly similar to that reported earlier in 2019. The mFISH analysis detected chromosome aberrations in 8.6% of the cells in the form of both unbalanced and balanced translocations. Additionally, a clonal translocation involving chromosomes 14p; 15q was observed in 2 of the 500 cells analyzed. Out of the 500 cells examined, one cell showed a complex translocation (involving chromosomes 9, 10, and 16) besides 5 other chromosome rearrangements. Collectively, our study indicates that the past radioiodine exposure results in long-lasting chromosome damage and that the persistence of translocations can be useful for both retrospective biodosimetry and for monitoring chromosome instability in the lymphocytes of radioiodine exposed individuals.


Asunto(s)
Radioisótopos de Yodo , Translocación Genética , Humanos , Masculino , Estudios de Seguimiento , Radioisótopos de Yodo/efectos adversos , Estudios Retrospectivos , Análisis Citogenético/métodos
2.
J Radiol Prot ; 41(4)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34233319

RESUMEN

Cells exposed to ionizing radiation have a wide spectrum of DNA lesions that include DNA single-strand breaks, DNA double-strand breaks (DSBs), oxidative base damage and DNA-protein crosslinks. Among them, DSB is the most critical lesion, which when mis-repaired leads to unstable and stable chromosome aberrations. Currently, chromosome aberration analysis is the preferred method for biological monitoring of radiation-exposed humans. Stable chromosome aberrations, such as inversions and balanced translocations, persist in the peripheral blood lymphocytes of radiation-exposed humans for several years and, therefore, are potentially useful tools to prognosticate the health risks of radiation exposure, particularly in the hematopoietic system. In this review, we summarize the cytogenetic follow-up studies performed by REAC/TS (Radiation Emergency Assistance Center/Training site, Oak Ridge, USA) on humans exposed to internal and external radiation. In the light of our observations as well as the data existing in the literature, this review attempts to highlight the importance of follow-up studies for predicting the extent of genomic instability and its impact on delayed health risks in radiation-exposed victims.


Asunto(s)
Roturas del ADN de Doble Cadena , Radiación Ionizante , Aberraciones Cromosómicas , Análisis Citogenético , Estudios de Seguimiento , Humanos
3.
Cytogenet Genome Res ; 159(4): 169-181, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31846971

RESUMEN

Here, we report the findings of a 25-year cytogenetic follow-up study on a male patient who received 2 rounds of radioiodine treatment within a span of 26 months (1.78 GBq in 1992 and 14.5 GBq in 1994). The patient was 34 years old with a body mass index of 25 at the time of the first radioiodine treatment. Multicolor FISH and multicolor banding (mBAND) techniques performed on the patient detected inter- and intrachromosomal exchanges. Although the frequency of chromosome translocations remained essentially the same as reported in our earlier study (0.09/cell), the percentage of reciprocal (balanced) translocations increased from 54.38 to 80.30% in the current study. In addition to simple chromosome translocations, complex exchanges (0.29%) involving more than 2 chromosomes were detected for the first time in this patient. Strikingly, a clonal translocation involving chromosomes 14 and 15, t(14p;15q), was found in 7 of the 677 cells examined (1.03%). The presence of complex and clonal translocations indicates the onset of chromosomal instability induced by internal radioiodine exposure. mBAND analysis using probes specific for chromosomes 1, 2, 4, 5, and 10 revealed 5 inversions in a total of 717 cells (0.69%), and this inversion frequency is several-fold higher than the baseline frequency reported in healthy individuals using the classical G-banding technique. Collectively, our study suggests that stable chromosome aberrations such as translocations and inversions can be useful not only for retrospective biodosimetry but also for long-term monitoring of chromosomal instability caused by past radioiodine exposure.


Asunto(s)
Cromosomas/genética , Cromosomas/efectos de la radiación , Radioisótopos de Yodo/efectos adversos , Translocación Genética/genética , Translocación Genética/efectos de la radiación , Adulto , Aberraciones Cromosómicas/efectos de la radiación , Bandeo Cromosómico/métodos , Inversión Cromosómica/genética , Inversión Cromosómica/efectos de la radiación , Citogenética/métodos , Estudios de Seguimiento , Humanos , Masculino
4.
PLoS One ; 14(5): e0216081, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31059552

RESUMEN

A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3-4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6-8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry. Realizing the advantage of G0 PCC technique that can be instantaneously applied to unstimulated lymphocytes, we evaluated the utility of G0 PCC technique in detecting ionizing radiation (IR) induced stable and unstable chromosomal aberrations for biodosimetry purposes. Our study demonstrates that PCC coupled with mFISH and mBAND techniques can efficiently detect both numerical and structural chromosome aberrations at the intra- and inter-chromosomal levels in unstimulated T- and B-lymphocytes. Collectively, we demonstrate that the G0 PCC technique has the potential for development as a biodosimetry tool for detecting unstable chromosome aberrations (chromosome fragments and dicentric chromosomes) for early radiation dose estimation and stable chromosome exchange events (translocations) for retrospective monitoring of individualized health risks in unstimulated lymphocytes.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Linfocitos/efectos de la radiación , Radiometría/métodos , Animales , Células CHO/efectos de la radiación , Fusión Celular , Centrómero/efectos de la radiación , Cricetulus , Femenino , Rayos gamma/efectos adversos , Humanos , Hibridación Fluorescente in Situ , Masculino , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/genética , Radiación Ionizante , Estudios Retrospectivos , Cariotipificación Espectral/métodos , Telómero/efectos de la radiación , Rayos X/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA