Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 140(10): 1167-1181, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35853161

RESUMEN

Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Animales , Apoptosis , Humanos , Leucemia Mieloide Aguda/genética , Complejo Mayor de Histocompatibilidad , Ratones , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Trasplante Homólogo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
2.
J Immunol ; 207(7): 1926-1936, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470856

RESUMEN

Innate immune sensing of cytosolic DNA via absent in melanoma 2 (AIM2) is a key mechanism leading to inflammatory responses. As aberrant immune responses by dysregulated AIM2 are associated with autoinflammatory diseases, activation of the AIM2 inflammasome should be tightly controlled. In this study, we discovered that ubiquitination and deubiquitination of AIM2 are critical events that regulate AIM2 inflammasome activation. In resting human macrophage cells, AIM2 is constitutively ubiquitinated and undergoes proteasomal degradation to avoid autoinflammation. Upon DNA stimulation, USP21 binds to AIM2 and deubiquitinates it, thereby increasing its protein stability. In addition to the role of USP21 in regulating AIM2 turnover, we uncovered that USP21-mediated deubiquitination of AIM2 is required for the assembly of the AIM2 inflammasome. Depletion of USP21 does not affect the DNA-binding ability of AIM2 but inhibits the formation of the AIM2-ASC complex. Our findings establish that fine-tuning of AIM2 by the ubiquitin system is important for regulating AIM2 inflammasome activation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Inflamación/inmunología , Macrófagos/inmunología , Ubiquitina Tiolesterasa/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Unión Proteica , Estabilidad Proteica , ARN Interferente Pequeño/genética , Células THP-1 , Ubiquitina Tiolesterasa/genética , Ubiquitinación
3.
PLoS Genet ; 17(4): e1009523, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857133

RESUMEN

The comorbid association of autoimmune diseases with cancers has been a major obstacle to successful anti-cancer treatment. Cancer survival rate decreases significantly in patients with preexisting autoimmunity. However, to date, the molecular and cellular profiles of such comorbidities are poorly understood. We used Aicardi-Goutières syndrome (AGS) as a model autoimmune disease and explored the underlying mechanisms of genome instability in AGS-associated-gene-deficient patient cells. We found that R-loops are highly enriched at transcription-replication conflict regions of the genome in fibroblast of patients bearing SAMHD1 mutation, which is the AGS-associated-gene mutation most frequently reported with tumor and malignancies. In SAMHD1-depleted cells, R-loops accumulated with the concomitant activation of DNA damage responses. Removal of R-loops in SAMHD1 deficiency reduced cellular responses to genome instability. Furthermore, downregulation of SAMHD1 expression is associated with various types of cancer and poor survival rate. Our findings suggest that SAMHD1 functions as a tumor suppressor by resolving R-loops, and thus, SAMHD1 and R-loop may be novel diagnostic markers and targets for patient stratification in anti-cancer therapy.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes/genética , Inestabilidad Genómica/genética , Malformaciones del Sistema Nervioso/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/patología , Línea Celular Tumoral , Daño del ADN/genética , Replicación del ADN/genética , Fibroblastos/metabolismo , Genoma Humano/genética , Humanos , Mutación/genética , Neoplasias/genética , Neoplasias/terapia , Malformaciones del Sistema Nervioso/inmunología , Malformaciones del Sistema Nervioso/patología , Estructuras R-Loop/genética , Proteína 1 que Contiene Dominios SAM y HD/ultraestructura , Transcripción Genética/genética , Transfección
4.
Sci Rep ; 8(1): 84, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311560

RESUMEN

The autoimmune disorder Aicardi-Goutières syndrome (AGS) is characterized by a constitutive type I interferon response. SAMHD1 possesses both dNTPase and RNase activities and mutations in SAMHD1 cause AGS; however, how SAMHD1-deficiency causes the type I interferon response in patients with AGS remains unknown. Here, we show that endogenous RNA substrates accumulated in the absence of SAMHD1 act as a major immunogenic source for the type I interferon response. Reconstitution of SAMHD1-negative human cells with wild-type but not RNase-defective SAMHD1 abolishes spontaneous type I interferon induction. We further identify that the PI3K/AKT/IRF3 signaling pathway is essential for the type I interferon response in SAMHD1-deficient human monocytic cells. Treatment of PI3K or AKT inhibitors dramatically reduces the type I interferon signatures in SAMHD1-deficient cells. Moreover, SAMHD1/AKT1 double knockout relieves the type I interferon signatures to the levels observed for wild-type cells. Identification of AGS-related RNA sensing pathway provides critical insights into the molecular pathogenesis of the type I interferonopathies such as AGS and overlapping autoimmune disorders.


Asunto(s)
Estudios de Asociación Genética , Interferón Tipo I/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/deficiencia , Transducción de Señal , Animales , Línea Celular , Humanos , Factor 3 Regulador del Interferón/metabolismo , Ratones , Monocitos/metabolismo , Mutación , ARN/genética , ARN/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismo
5.
Biochem Biophys Res Commun ; 477(4): 977-981, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387229

RESUMEN

SAMHD1 plays diverse roles in innate immunity, autoimmune diseases and HIV restriction, but the mechanisms involved are still unclear. SAMHD1 has been reported to have both dNTPase and RNase activities. However, whether SAMHD1 possesses RNase activity remains highly controversial. Here, we found that, unlike conventional hydrolytic exoribonucleases, SAMHD1 requires inorganic phosphate to degrade RNA substrates and produces nucleotide diphosphates rather than nucleoside monophosphates, which indicated that SAMHD1 is a phosphorolytic but not hydrolytic 3'-5' exoribonuclease. Furthermore, SAMHD1 preferentially cleaved single-stranded RNAs comprising A20 or U20, whereas neither C20 nor G20 was susceptible to SAMHD1-mediated degradation. Our findings will facilitate more advanced studies into the role of the SAMHD1 RNase function in the cellular pathogenesis implicated in nucleic acid-triggered inflammatory responses and the anti-retroviral function of SAMHD1.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Fosfatos de Dinucleósidos/química , Proteínas de Unión al GTP Monoméricas/química , Malformaciones del Sistema Nervioso/enzimología , ARN/química , Proteínas de los Retroviridae/química , Ribonucleasas/química , Sitios de Unión , Activación Enzimática , Humanos , Hidrólisis , Fosforilación , Unión Proteica , Proteína 1 que Contiene Dominios SAM y HD
6.
Retrovirology ; 12: 46, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26032178

RESUMEN

BACKGROUND: Human SAMHD1 possesses dual enzymatic functions. It acts as both a dGTP-dependent triphosphohydrolase and as an exoribonuclease. The dNTPase function depletes the cellular dNTP pool, which is required for retroviral reverse transcription in differentiated myeloid cells and resting CD4(+) T cells; thus this activity mainly plays a role in SAMHD1-mediated retroviral restriction. However, a recent study demonstrated that SAMHD1 directly targets HIV-1 genomic RNA via its RNase activity, and that this function (rather than dNTPase activity) is sufficient for HIV-1 restriction. While HIV-1 genomic RNA is a potent target for SAMHD1 during viral infection, the specificity of SAMHD1-mediated RNase activity during infection by other viruses is unclear. RESULTS: The results of the present study showed that SAMHD1 specifically degrades retroviral genomic RNA in monocyte-derived macrophage-like cells and in primary monocyte-derived macrophages. Consistent with this, SAMHD1 selectively restricted retroviral replication, but did not affect the replication of other common non-retro RNA genome viruses, suggesting that the RNase-mediated antiviral function of SAMHD1 is limited to retroviruses. In addition, neither inhibiting reverse transcription by treatment with several reverse transcriptase inhibitors nor infection with reverse transcriptase-defective HIV-1 altered RNA levels after viral challenge, indicating that the retrovirus-specific RNase function is not dependent on processes associated with retroviral reverse transcription. CONCLUSIONS: The results presented herein suggest that the RNase activity of SAMHD1 is sufficient to control the replication of retroviruses, but not that of non-retro RNA viruses.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Proteínas de Unión al GTP Monoméricas/metabolismo , ARN Viral/metabolismo , Retroviridae/inmunología , Ribonucleasas/metabolismo , Replicación Viral , Línea Celular , Humanos , Hidrólisis , Macrófagos/inmunología , Macrófagos/virología , Retroviridae/fisiología , Proteína 1 que Contiene Dominios SAM y HD
7.
Nat Med ; 20(8): 936-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25038827

RESUMEN

The HIV-1 restriction factor SAM domain- and HD domain-containing protein 1 (SAMHD1) is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool. However, phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1 for defects in RNase or dNTPase activity, we identify SAMHD1 point mutants that cause loss of one or both functions. The RNase-positive and dNTPase-negative SAMHD1D137N mutant is able to restrict HIV-1 infection, whereas the RNase-negative and dNTPase-positive SAMHD1Q548A mutant is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of cell infection. SAMHD1 silencing in macrophages and CD4(+) T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in cells and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , ARN Viral/metabolismo , Replicación Viral , Enfermedades Autoinmunes del Sistema Nervioso/genética , Secuencia de Bases , Sitios de Unión/genética , Linfocitos T CD4-Positivos , Línea Celular Tumoral , Infecciones por VIH/genética , Células HeLa , Humanos , Macrófagos , Mutación , Malformaciones del Sistema Nervioso/genética , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/genética , Ribonucleasas/metabolismo , Proteína 1 que Contiene Dominios SAM y HD , Análisis de Secuencia de ARN
8.
Antioxid Redox Signal ; 15(3): 621-33, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21299467

RESUMEN

Most antigenic peptides are generated by proteasomes in the cytosol and are transported by the transporter associated with antigen processing (TAP) into the endoplasmic reticulum, where they bind with nascent major histocompatibilitiy complex class I molecule (MHC-I). Although the overall process of peptide-MHC-I complex assembly is well studied, the mechanism by which free peptides are delivered from TAP to MHC-I is unknown. In this study, we investigated the possible role of protein disulfide isomerase (PDI) as a peptide carrier between TAP and MHC-I. Analysis of PDI-peptide complexes reconstituted in vitro showed that PDI exhibits some degree of specificity for peptides corresponding to antigenic ligands of various human leukocyte antigen (HLA) alleles. Mutations of either anchor residues of the peptide ligand or the peptide-binding site of PDI inhibited the PDI-peptide interaction. The PDI-peptide interaction increased under reducing conditions, whereas binding of the peptide to PDI decreased under oxidizing conditions. TAP-associated PDI was predominantly present in the reduced form, whereas the MHC-I-associated PDI was present in the oxidized form. Further, upon binding of optimal peptides, PDI was released from TAP and sequentially associated with HLA-A2.1. Our data revealed a redox-regulated chaperone function of PDI in delivering antigenic peptides from TAP to MHC-I.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Proteína Disulfuro Isomerasas/metabolismo , Transportadoras de Casetes de Unión a ATP/inmunología , Sitios de Unión/genética , Antígeno HLA-A2/inmunología , Antígeno HLA-A2/metabolismo , Células HeLa , Humanos , Ligandos , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Péptidos/inmunología , Péptidos/metabolismo
9.
Traffic ; 12(1): 42-55, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20946353

RESUMEN

Major histocompatibility complex class I (MHC-I) molecules bind antigens in the endoplasmic reticulum (ER) and deliver them to the cell surface for immune surveillance of viruses and tumors. Whereas key steps of MHC-I assembly and its acquisition of peptides in the ER are relatively well defined, little is known about how MHC-I molecules leave the ER for cell surface expression. Here, we show that ER export of human classical MHC-I molecules (HLA-A/-B/-C) is regulated by their C-terminal single amino acid, valine or alanine. These amino acids, conserved in nearly all known human MHC-I alleles, serve as the ER export signal by binding to the Sec23/24 complex, a structural component of coat protein complex II (COPII) vesicles that mediate ER-to-Golgi trafficking. Together, our results strongly suggest that ER export of human classical MHC-I molecules can occur via a receptor-mediated process dictated by a highly conserved ER export signal.


Asunto(s)
Aminoácidos/metabolismo , Retículo Endoplásmico/metabolismo , Complejo Mayor de Histocompatibilidad/fisiología , Alanina/metabolismo , Secuencia de Aminoácidos , Proteína Coat de Complejo I/metabolismo , Antígeno HLA-A2/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiología
10.
Antioxid Redox Signal ; 11(4): 907-36, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19178136

RESUMEN

Major histocompatibility complex (MHC) class I molecules present antigenic peptides to the cell surface for screening by CD8(+) T cells. A number of ER-resident chaperones assist the assembly of peptides onto MHC class I molecules, a process that can be divided into several steps. Early folding of the MHC class I heavy chain is followed by its association with beta(2)-microglobulin (beta(2)m). The MHC class I heavy chain-beta(2)m heterodimer is incorporated into the peptide-loading complex, leading to peptide loading, release of the peptide-filled MHC class I molecules from the peptide-loading complex, and exit of the complete MHC class I complex from the ER. Because proper antigen presentation is vital for normal immune responses, the assembly of MHC class I molecules requires tight regulation. Emerging evidence indicates that thiol-based redox regulation plays critical roles in MHC class I-restricted antigen processing and presentation, establishing an unexpected link between redox biology and antigen processing. We review the influences of redox regulation on antigen processing and presentation. Because redox signaling pathways are a rich source of validated drug targets, newly discovered redox biology-mediated mechanisms of antigen processing may facilitate the development of more selective and therapeutic drugs or vaccines against immune diseases.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Sitios de Unión , Retículo Endoplásmico/metabolismo , Humanos , Oxidación-Reducción , Péptidos/metabolismo , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA