Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 51(17): 9279-9293, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37602378

RESUMEN

Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements.


Asunto(s)
ARN Helicasas , Humanos , Codón Iniciador , Exorribonucleasas/metabolismo , Interferones/genética , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/genética
2.
Cell Rep ; 42(1): 111902, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36586408

RESUMEN

The evolutionary conserved CCR4-NOT complex functions in the cytoplasm as the main mRNA deadenylase in both constitutive mRNA turnover and regulated mRNA decay pathways. The versatility of this complex is underpinned by its modular multi-subunit organization, with distinct structural modules actuating different functions. The structure and function of all modules are known, except for that of the N-terminal module. Using different structural approaches, we obtained high-resolution data revealing the architecture of the human N-terminal module composed of CNOT1, CNOT10, and CNOT11. The structure shows how two helical domains of CNOT1 sandwich CNOT10 and CNOT11, leaving the most conserved domain of CNOT11 protruding into solvent as an antenna. We discovered that GGNBP2, a protein identified as a tumor suppressor and spermatogenic factor, is a conserved interacting partner of the CNOT11 antenna domain. Structural and biochemical analyses thus pinpoint the N-terminal CNOT1-CNOT10-CNOT11 module as a conserved protein-protein interaction platform.


Asunto(s)
Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Unión Proteica
3.
RNA Biol ; 18(12): 2450-2465, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34060423

RESUMEN

Antiproliferative BTG/Tob proteins interact directly with the CAF1 deadenylase subunit of the CCR4-NOT complex. This binding requires the presence of two conserved motifs, boxA and boxB, characteristic of the BTG/Tob APRO domain. Consistently, these proteins were shown to stimulate mRNA deadenylation and decay in several instances. Two members of the family, BTG1 and BTG2, were reported further to associate with the protein arginine methyltransferase PRMT1 through a motif, boxC, conserved only in this subset of proteins. We recently demonstrated that BTG1 and BTG2 also contact the first RRM domain of the cytoplasmic poly(A) binding protein PABPC1. To decipher the mode of interaction of BTG1 and BTG2 with partners, we performed nuclear magnetic resonance experiments as well as mutational and biochemical analyses. Our data demonstrate that, in the context of an APRO domain, the boxC motif is necessary and sufficient to allow interaction with PABPC1 but, unexpectedly, that it is not required for BTG2 association with PRMT1. We show further that the presence of a boxC motif in an APRO domain endows it with the ability to stimulate deadenylation in cellulo and in vitro. Overall, our results identify the molecular interface allowing BTG1 and BTG2 to activate deadenylation, a process recently shown to be necessary for maintaining T-cell quiescence.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Poli A/metabolismo , Poliadenilación , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Mensajero/química , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas de Neoplasias/genética , Poli A/genética , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética
4.
Nucleic Acids Res ; 48(11): 6353-6366, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32396195

RESUMEN

Most eukaryotic mRNAs harbor a characteristic 5' m7GpppN cap that promotes pre-mRNA splicing, mRNA nucleocytoplasmic transport and translation while also protecting mRNAs from exonucleolytic attacks. mRNA caps are eliminated by Dcp2 during mRNA decay, allowing 5'-3' exonucleases to degrade mRNA bodies. However, the Dcp2 decapping enzyme is poorly active on its own and requires binding to stable or transient protein partners to sever the cap of target mRNAs. Here, we analyse the role of one of these partners, the yeast Pby1 factor, which is known to co-localize into P-bodies together with decapping factors. We report that Pby1 uses its C-terminal domain to directly bind to the decapping enzyme. We solved the structure of this Pby1 domain alone and bound to the Dcp1-Dcp2-Edc3 decapping complex. Structure-based mutant analyses reveal that Pby1 binding to the decapping enzyme is required for its recruitment into P-bodies. Moreover, Pby1 binding to the decapping enzyme stimulates growth in conditions in which decapping activation is compromised. Our results point towards a direct connection of Pby1 with decapping and P-body formation, both stemming from its interaction with the Dcp1-Dcp2 holoenzyme.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Proteínas de Unión al ADN/química , Endopeptidasas/química , Endopeptidasas/metabolismo , Endorribonucleasas/química , Holoenzimas/química , Holoenzimas/metabolismo , Ligasas/metabolismo , Modelos Moleculares , Orgánulos/enzimología , Orgánulos/metabolismo , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química
5.
Enzymes ; 41: 117-149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28601220

RESUMEN

Elongator is a highly conserved eukaryotic protein complex consisting of two sets of six Elp proteins, while homologues of its catalytic subunit Elp3 are found in all the kingdoms of life. Although it was originally described as a transcription elongation factor, cumulating evidence suggests that its primary function is catalyzing tRNA modifications. In humans, defects in Elongator subunits are associated with neurological disorders and cancer. Although further studies are still required, a clearer picture of the molecular mechanism of action of Elongator and its cofactors has started to emerge within recent years that have witnessed significant development in the field. In this review we summarize recent Elongator-related findings provided largely by crystal structures of several subunits of the complex, the electron microscopy structure of the entire yeast holoenzyme, as well as the structure of the Elongator cofactor complex Kti11/Kti13.


Asunto(s)
Histona Acetiltransferasas/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Factores de Elongación de Péptidos/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Represoras/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/ultraestructura , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Humanos , Complejos Multiproteicos/ultraestructura , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/ultraestructura , ARN de Transferencia/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
Nat Struct Mol Biol ; 23(9): 794-802, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455459

RESUMEN

During translation elongation, decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons are receiving increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs. Mutations in Elongator subunits are associated with certain neurodegenerative diseases and cancer. Here we present the crystal structure of D. mccartyi Elp3 (DmcElp3) at 2.15-Å resolution. Our results reveal an unexpected arrangement of Elp3 lysine acetyltransferase (KAT) and radical S-adenosyl methionine (SAM) domains, which share a large interface and form a composite active site and tRNA-binding pocket, with an iron-sulfur cluster located in the dimerization interface of two DmcElp3 molecules. Structure-guided mutagenesis studies of yeast Elp3 confirmed the relevance of our findings for eukaryotic Elp3s and should aid in understanding the cellular functions and pathophysiological roles of Elongator.


Asunto(s)
Proteínas Bacterianas/química , Histona Acetiltransferasas/química , ARN de Transferencia/química , Dominio Catalítico , Chloroflexi/enzimología , Cristalografía por Rayos X , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , ARN Bacteriano/química , Especificidad por Sustrato
7.
Nat Commun ; 7: 10811, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26912148

RESUMEN

While BTG2 plays an important role in cellular differentiation and cancer, its precise molecular function remains unclear. BTG2 interacts with CAF1 deadenylase through its APRO domain, a defining feature of BTG/Tob factors. Our previous experiments revealed that expression of BTG2 promoted mRNA poly(A) tail shortening through an undefined mechanism. Here we report that the APRO domain of BTG2 interacts directly with the first RRM domain of the poly(A)-binding protein PABPC1. Moreover, PABPC1 RRM and BTG2 APRO domains are sufficient to stimulate CAF1 deadenylase activity in vitro in the absence of other CCR4-NOT complex subunits. Our results unravel thus the mechanism by which BTG2 stimulates mRNA deadenylation, demonstrating its direct role in poly(A) tail length control. Importantly, we also show that the interaction of BTG2 with the first RRM domain of PABPC1 is required for BTG2 to control cell proliferation.


Asunto(s)
Proliferación Celular , Proteínas Inmediatas-Precoces/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Western Blotting , Línea Celular Tumoral , Células HEK293 , Humanos , Inmunoprecipitación , Técnicas In Vitro , Estructura Terciaria de Proteína
8.
FEBS J ; 282(5): 819-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25604895

RESUMEN

UNLABELLED: Modification of wobble uridines of many eukaryotic tRNAs requires the Elongator complex, a highly conserved six-subunit eukaryotic protein assembly, as well as the Killer toxin-insensitive (Kti) proteins 11-14. Kti11 was additionally shown to be implicated in the biosynthesis of diphthamide, a post-translationally modified histidine of translation elongation factor 2. Recent data indicate that iron-bearing Kti11 functions as an electron donor to the [4Fe-4S] cluster of radical S-Adenosylmethionine enzymes, triggering the subsequent radical reaction. We show here that recombinant yeast Kti11 forms a stable 1 : 1 complex with Kti13. To obtain insights into the function of this heterodimer, the Kti11/Kti13 complex was purified to homogeneity, crystallized, and its structure determined at 1.45 Å resolution. The importance of several residues mediating complex formation was confirmed by mutagenesis. Kti13 adopts a fold characteristic of RCC1-like proteins. The seven-bladed ß-propeller consists of a unique mixture of four- and three-stranded blades. In the complex, Kti13 orients Kti11 and restricts access to its electron-carrying iron atom, constraining the electron transfer capacity of Kti11. Based on these findings, we propose a role for Kti13, and discuss the possible functional implications of complex formation. DATABASE: Structural data have been submitted to the Protein Data Bank under accession number 4X33.


Asunto(s)
ARN de Transferencia/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Transporte de Electrón , Hierro/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , ARN de Transferencia/química , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Electricidad Estática
9.
Nucleic Acids Res ; 43(1): 482-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25432955

RESUMEN

Eukaryotic 5' mRNA cap structures participate to the post-transcriptional control of gene expression before being released by the two main mRNA decay pathways. In the 3'-5' pathway, the exosome generates free cap dinucleotides (m7GpppN) or capped oligoribonucleotides that are hydrolyzed by the Scavenger Decapping Enzyme (DcpS) forming m7GMP. In the 5'-3' pathway, the decapping enzyme Dcp2 generates m7GDP. We investigated the fate of m7GDP and m7GpppN produced by RNA decay in extracts and cells. This defined a pathway involving DcpS, NTPs and the nucleoside diphosphate kinase for m7GDP elimination. Interestingly, we identified and characterized in vitro and in vivo a new scavenger decapping enzyme involved in m7GpppN degradation. We show that activities mediating cap elimination identified in yeast are essentially conserved in human. Their alteration may contribute to pathologies, possibly through the interference of cap (di)nucleotide with cellular function.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Neoplasias/metabolismo , Caperuzas de ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Adenosina Trifosfato/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/metabolismo , Células HEK293 , Humanos , N-Glicosil Hidrolasas/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Análogos de Caperuza de ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Trends Biochem Sci ; 34(12): 640-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19828319

RESUMEN

BTG/TOB factors are a family of antiproliferative proteins whose expression is altered in numerous cancers. They have been implicated in cell differentiation, development and apoptosis. Although proposed to affect transcriptional regulation, these factors interact with CAF1, a subunit of the main eukaryotic deadenylase, and with poly(A)-binding-proteins, strongly suggesting a role in post-transcriptional regulation of gene expression. The recent determination of the structures of BTG2, TOB1 N-terminal domain (TOB1N138) and TOB1N138-CAF1 complexes support a role for BTG/TOB proteins in mRNA deadenylation, a function corroborated by recently published functional characterizations. We highlight molecular mechanisms by which BTG/TOB proteins influence deadenylation and discuss the need for a better understanding of BTG/TOB physiological functions.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Humanos , Modelos Biológicos , Conformación Proteica , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo
11.
EMBO J ; 27(22): 2966-76, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18923425

RESUMEN

Regulation of mRNA decay is an important step modulating gene expression. The stability of numerous eukaryotic mRNAs is controlled by adenosine/uridine-rich elements (AREs) located in their 3'UTR. In Saccharomyces cerevisiae, the Cth2 protein stimulates the decay of target ARE mRNAs on iron starvation. Cth2, and its mammalian homologue tristetraprolin, contains a characteristic tandem CCCH zinc-finger essential for ARE binding and mRNA decay. We have performed a structure-function analysis of Cth2 to understand the mechanism(s) by which it destabilizes mRNAs. This indicated that a conserved N-terminal region of Cth2 is essential for its decay function but dispensable for RNA binding. Unexpectedly, Cth2 mutants lacking this domain blocked the normal 3' end processing of ARE mRNAs leading to the formation of extended transcripts. These can also be detected in mutant of the polyadenylation machinery. Consistently, Cth2 localization in the nucleus suggests that it may interfere with poly(A) site selection. Our analysis reveal that ARE-binding protein may affect mRNA 3' end processing and that this contributes to mRNA destabilization.


Asunto(s)
Procesamiento de Término de ARN 3' , Estabilidad del ARN , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Tristetraprolina/química , Tristetraprolina/metabolismo , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Poliadenilación , ARN de Hongos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Tristetraprolina/genética
12.
EMBO J ; 27(7): 1039-48, 2008 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-18337750

RESUMEN

BTG2 is a prototype member of the BTG/Tob family of antiproliferative proteins, originally identified as a primary response gene induced by growth factors and tumour promoters. Its expression has been linked to diverse cellular processes such as cell-cycle progression, differentiation or apoptosis. BTG2 has also been shown to interact with the Pop2/Caf1 deadenylase. Here, we demonstrate that BTG2 is a general activator of mRNA decay, thereby contributing to gene expression control. Detailed characterizations of BTG2 show that it enhances deadenylation of all transcripts tested. Our results demonstrate that Caf1 nuclease activity is required for efficient deadenylation in mammalian cells and that the deadenylase activities of both Caf1 and its Ccr4 partner are required for Btg2-induced poly(A) degradation. General activation of deadenylation may represent a new mode of global regulation of gene expression, which could be important to allow rapid resetting of protein production during development or after specific stresses. This may constitute a common function for BTG/Tob family members.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Poliadenilación , Animales , Dominio Catalítico , Línea Celular , Exorribonucleasas , Regulación de la Expresión Génica , Genes Dominantes , Genes Reporteros , Genes Supresores de Tumor , Globinas/metabolismo , Semivida , Humanos , Ratones , Proteínas Mutantes/metabolismo , Unión Proteica , Proteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CCR4/metabolismo , Proteínas Represoras , Ribonucleasas/metabolismo , Transfección , Proteínas Supresoras de Tumor
13.
Proteins ; 71(4): 1617-36, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18076038

RESUMEN

The spliceosomal protein p14, a component of the SF3b complex in the U2 small nuclear ribonucleoprotein (snRNP), is essential for the U2 snRNP to recognize the branch site adenosine. The elucidation of the dynamic process of the splicing machinery rearrangement awaited the solution structural information. We identified a suitable complex of human p14 and the SF3b155 fragment for the determination of its solution structure by NMR. In addition to the overall structure of the complex, which was recently reported in a crystallographic study (typical RNA recognition motif fold beta1-alpha1-beta2-beta3-alpha2-beta4 of p14, and alphaA-betaA fold of the SF3b155 fragment), we identified three important features revealed by the NMR solution structure. First, the C-terminal extension and the nuclear localization signal of p14 (alpha3 and alpha4 in the crystal structure, respectively) were dispensable for the complex formation. Second, the proline-rich segment of SF3b155, following betaA, closely approaches p14. Third, interestingly, the beta1-alpha1 loop and the alpha2-beta4 beta-hairpin form a positively charged groove. Extensive mutagenesis analyses revealed the functional relevance of the residues involved in the protein-protein interactions: two aromatic residues of SF3b155 (Phe408 and Tyr412) play crucial roles in the complex formation, and two hydrophobic residues (Val414 and Leu415) in SF3b 155 serve as an anchor for the complex formation, by cooperating with the aromatic residues. These findings clearly led to the conclusion that SFb155 binds to p14 with three contact points, involving Phe408, Tyr412, and Val414/Leu415. Furthermore, to dissect the interactions between p14 and the branch site RNA, we performed chemical-shift-perturbation experiments, not only for the main-chain but also for the side-chain resonances, for several p14-SF3b155 complex constructs upon binding to RNA. These analyses identified a positively charged groove and the C-terminal extension of p14 as RNA-binding sites. Strikingly, an aromatic residue in the beta1-alpha1 loop, Tyr28, and a positively charged residue in the alpha2-beta4 beta-hairpin, Agr85, are critical for the RNA-binding activity of the positively charged groove. The Tyr28Ala and Arg85Ala point mutants and a deletion mutant of the C-terminal extension clearly revealed that their RNA binding activities were independent of each other. Collectively, this study provides details for the protein-recognition mode of p14 and insight into the branch site recognition.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Empalmosomas/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Núcleo Celular/química , ADN Complementario/química , Glutatión Transferasa/metabolismo , Histidina/metabolismo , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Leucina/química , Modelos Moleculares , Datos de Secuencia Molecular , Señales de Localización Nuclear/química , Fenilalanina/metabolismo , Fosfoproteínas/genética , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Empalme del ARN , Factores de Empalme de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteínas/genética , Homología de Secuencia de Aminoácido , Empalmosomas/metabolismo , Tripsina/farmacología , Tirosina/metabolismo , Valina/química
14.
EMBO J ; 26(9): 2317-26, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17410208

RESUMEN

The nuclear exosome is involved in numerous RNA metabolic processes. Exosome degradation of rRNA, snoRNA, snRNA and tRNA in Saccharomyces cerevisiae is activated by TRAMP complexes, containing either the Trf4p or Trf5p poly(A) polymerase. These enzymes are presumed to facilitate exosome access by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' --> 5' exonuclease Rrp6p is required for both retention and degradation of nuclear restricted mRNAs. We show here that Trf4p, in the context of TRAMP, is an mRNA surveillance factor. However, unlike Rrp6p, Trf4p only partakes in RNA degradation and not in transcript retention. Surprisingly, a polyadenylation-defective Trf4p protein is fully active, suggesting polyadenylation-independent mRNA degradation. Transcription pulse-chase experiments show that HSP104 molecules undergoing quality control in THO/sub2 mutant strains fall into two distinct populations: One that is quickly degraded after transcription induction and another that escapes rapid decay and accumulates in foci associated with the HSP104 transcription site.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Complejos Multiproteicos , Mutación , Proteínas Nucleares , Poliadenilación , Estabilidad del ARN/fisiología , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
15.
Science ; 313(5795): 1968-72, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16931718

RESUMEN

In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric exon junction core complex containing the DEAD-box adenosine triphosphatase (ATPase) eukaryotic initiation factor 4AIII (eIF4AIII) bound to an ATP analog, MAGOH, Y14, a fragment of MLN51, and a polyuracil mRNA mimic. eIF4AIII interacts with the phosphate-ribose backbone of six consecutive nucleotides and prevents part of the bound RNA from being double stranded. The MAGOH and Y14 subunits lock eIF4AIII in a prehydrolysis state, and activation of the ATPase probably requires only modest conformational changes in eIF4AIII motif I.


Asunto(s)
Factor 4A Eucariótico de Iniciación/química , Exones , Proteínas de Neoplasias/química , Proteínas Nucleares/química , Poli U/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , ARN Helicasas DEAD-box , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Poli U/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
16.
Nat Struct Mol Biol ; 12(10): 861-9, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16170325

RESUMEN

The multiprotein exon junction complex (EJC) is assembled on mRNAs as a consequence of splicing. EJC core components maintain a stable grip on mRNAs even as the overall EJC protein composition evolves while mRNAs travel to the cytoplasm. Here we show that recombinant EJC subunits MLN51, MAGOH and Y14, together with the DEAD-box protein eIF4AIII bound to ATP, are necessary and sufficient to form a highly stable complex on single-stranded RNA. Cross-linking and RNase protection studies indicate that this recombinant complex recapitulates the EJC core. The stable association of the recombinant EJC core with RNA is maintained by inhibition of eIF4AIII ATPase activity by MAGOH-Y14. We elucidate the modalities of EJC binding to RNA and provide the first example of how cellular machineries may use RNA helicases to clamp several proteins onto RNA in stable and sequence-independent manners.


Asunto(s)
Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/química , Secuencia Conservada , Citoplasma/química , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Exones , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/genética , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Biol Chem ; 279(32): 33702-15, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15166247

RESUMEN

MLN51 is a nucleocytoplasmic shuttling protein that is overexpressed in breast cancer. The function of MLN51 in mammals remains elusive. Its fly homolog, named barentsz, as well as the proteins mago nashi and tsunagi have been shown to be required for proper oskar mRNA localization to the posterior pole of the oocyte. Magoh and Y14, the human homologs of mago nashi and tsunagi, are core components of the exon junction complex (EJC). The EJC is assembled on spliced mRNAs and plays important roles in post-splicing events including mRNA export, nonsense-mediated mRNA decay, and translation. In the present study, we show that human MLN51 is an RNA-binding protein present in ribonucleo-protein complexes. By co-immunoprecipitation assays, endogenous MLN51 protein is found to be associated with EJC components, including Magoh, Y14, and NFX1/TAP, and subcellular localization studies indicate that MLN51 transiently co-localizes with Magoh in nuclear speckles. Moreover, we demonstrate that MLN51 specifically associates with spliced mRNAs in co-precipitation experiments, both in the nucleus and in the cytoplasm, at the position where the EJC is deposited. Most interesting, we have identified a region within MLN51 sufficient to bind RNA, to interact with Magoh and spliced mRNA, and to address the protein to nuclear speckles. This conserved region of MLN51 was therefore named SELOR for speckle localizer and RNA binding module. Altogether our data demonstrate that MLN51 associates with EJC in the nucleus and remains stably associated with mRNA in the cytoplasm, suggesting that its overexpression might alter mRNA metabolism in cancer.


Asunto(s)
Núcleo Celular/metabolismo , Exones , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , ARN/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Núcleo Celular/química , Núcleo Celular/ultraestructura , Secuencia Conservada , Citoplasma/química , Escherichia coli/genética , Peces , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Técnicas de Inmunoadsorción , Ratones , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Alineación de Secuencia , Transfección , Xenopus , Pez Cebra
18.
J Cell Biol ; 165(1): 31-40, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15067023

RESUMEN

Understanding gene expression control requires defining the molecular and cellular basis of mRNA turnover. We have previously shown that the human decapping factors hDcp2 and hDcp1a are concentrated in specific cytoplasmic structures. Here, we show that hCcr4, hDcp1b, hLsm, and rck/p54 proteins related to 5'-3' mRNA decay also localize to these structures, whereas DcpS, which is involved in cap nucleotide catabolism, is nuclear. Functional analysis using fluorescence resonance energy transfer revealed that hDcp1a and hDcp2 interact in vivo in these structures that were shown to differ from the previously described stress granules. Our data indicate that these new structures are dynamic, as they disappear when mRNA breakdown is abolished by treatment with inhibitors. Accumulation of poly(A)(+) RNA in these structures, after RNAi-mediated inactivation of the Xrn1 exonuclease, demonstrates that they represent active mRNA decay sites. The occurrence of 5'-3' mRNA decay in specific subcellular locations in human cells suggests that the cytoplasm of eukaryotic cells may be more organized than previously anticipated.


Asunto(s)
Compartimento Celular/genética , Endorribonucleasas/metabolismo , Orgánulos/metabolismo , Estabilidad del ARN/genética , Línea Celular , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , ARN Helicasas DEAD-box , Endorribonucleasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Orgánulos/genética , Orgánulos/ultraestructura , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CCR4 , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo
19.
Oncogene ; 22(50): 8102-16, 2003 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-14603251

RESUMEN

The three human TACC (transforming acidic coiled-coil) genes encode a family of proteins with poorly defined functions that are suspected to play a role in oncogenesis. A Xenopus TACC homolog called Maskin is involved in translational control, while Drosophila D-TACC interacts with the microtubule-associated protein MSPS (Mini SPindleS) to ensure proper dynamics of spindle pole microtubules during cell division. We have delineated here the interactions of TACC1 with four proteins, namely the microtubule-associated chTOG (colonic and hepatic tumor-overexpressed gene) protein (ortholog of Drosophila MSPS), the adaptor protein TRAP (tudor repeat associator with PCTAIRE2), the mitotic serine/threonine kinase Aurora A and the mRNA regulator LSM7 (Like-Sm protein 7). To measure the relevance of the TACC1-associated complex in human cancer we have examined the expression of the three TACC, chTOG and Aurora A in breast cancer using immunohistochemistry on tissue microarrays. We show that expressions of TACC1, TACC2, TACC3 and Aurora A are significantly correlated and downregulated in a subset of breast tumors. Using siRNAs, we further show that depletion of chTOG and, to a lesser extent of TACC1, perturbates cell division. We propose that TACC proteins, which we also named 'Taxins', control mRNA translation and cell division in conjunction with microtubule organization and in association with chTOG and Aurora A, and that these complexes and cell processes may be affected during mammary gland oncogenesis.


Asunto(s)
Neoplasias de la Mama/enzimología , Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Aurora Quinasa A , Aurora Quinasas , Neoplasias de la Mama/metabolismo , Células CACO-2 , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Femenino , Células HeLa , Humanos , Filogenia , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas , Proteínas de Xenopus
20.
RNA ; 9(10): 1171-3, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-13130130

RESUMEN

A novel cytoplasmic compartment referred to as GW bodies (GWBs) was initially identified using antibodies specific to a 182-kD protein termed GW182. GW182 was characterized by multiple glycine(G)-tryptophan(W) repeats and an RNA recognition motif (RRM) that bound a subset of HeLa cell messenger RNAs (mRNAs). The function of GWBs was not known; however, more recent evidence suggested similarities between GWBs and cytoplasmic structures that contain hLSm proteins and hDcp1, the human homolog to a yeast decapping enzyme subunit. In this study, we used antibodies to hLSm4 and hDcp1 to show that both of these markers of an mRNA degradation pathway colocalize to the same structures as GW182. Our studies demonstrate that GW182, hLSm4, and hDcp1 are found in the same cytoplasmic structures and suggest that GW182 is involved in the same mRNA processing pathway as hLSm4 and hDcp1.


Asunto(s)
Autoantígenos/metabolismo , Citoplasma/metabolismo , Endopeptidasas/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Células Tumorales Cultivadas/metabolismo , Autoantígenos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Citoplasma/genética , Endopeptidasas/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA