Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Genet Metab ; 137(1-2): 114-126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36027720

RESUMEN

BACKGROUND: Early treated patients with phenylketonuria (PKU) often become lost to follow-up from adolescence onwards due to the historical focus of PKU care on the pediatric population and lack of programs facilitating the transition to adulthood. As a result, evidence on the management of adolescents and young adults with PKU is limited. METHODS: Two meetings were held with a multidisciplinary international panel of 25 experts in PKU and comorbidities frequently experienced by patients with PKU. Based on the outcomes of the first meeting, a set of statements were developed. During the second meeting, these statements were voted on for consensus generation (≥70% agreement), using a modified Delphi approach. RESULTS: A total of 37 consensus recommendations were developed across five areas that were deemed important in the management of adolescents and young adults with PKU: (1) general physical health, (2) mental health and neurocognitive functioning, (3) blood Phe target range, (4) PKU-specific challenges, and (5) transition to adult care. The consensus recommendations reflect the personal opinions and experiences from the participating experts supported with evidence when available. Overall, clinicians managing adolescents and young adults with PKU should be aware of the wide variety of PKU-associated comorbidities, initiating screening at an early age. In addition, management of adolescents/young adults should be a joint effort between the patient, clinical center, and parents/caregivers supporting adolescents with gradually gaining independent control of their disease during the transition to adulthood. CONCLUSIONS: A multidisciplinary international group of experts used a modified Delphi approach to develop a set of consensus recommendations with the aim of providing guidance and offering tools to clinics to aid with supporting adolescents and young adults with PKU.


Asunto(s)
Fenilcetonurias , Niño , Adolescente , Adulto Joven , Humanos , Adulto , Consenso , Fenilcetonurias/diagnóstico , Tamizaje Masivo
2.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35675510

RESUMEN

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Espasmos Infantiles , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Atrofia , Niño , Homeostasis , Humanos , Lactante , Lisosomas , Fenotipo
3.
Mol Genet Metab Rep ; 26: 100703, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33489760

RESUMEN

Hereditary orotic aciduria (HOA) is a very rare inborn error of pyrimidine metabolism. It results from a defect of the uridine-5-monophosphate synthase (UMPS) gene. To date, only about twenty patients have been described. We report a case of HOA with a novel variant in the UMPS gene. A 17-year-old Emirati girl was born to first-cousin parents. During the first year, she had recurrent, severe infections including disseminated varicella. After evaluation for immunodeficiency, an impression of immunodeficiency of unknown etiology was presumed. Frequent episodes of pancytopenia were also noted. Bone marrow biopsy showed trilineage megaloblastoid maturation with dysplastic changes that were refractory to hematinic therapy. Also, she was noted to have failure to thrive, developmental delay and epilepsy. She was referred to the Genetics clinic where whole-exome sequencing (WES) was done and showed a novel homozygous variant in the UMPS gene confirming a diagnosis of HOA. She was started on uridine triacetate after which she showed clinical, hematologic and biochemical improvement. Although extremely rare, hereditary orotic aciduria should be suspected in any child with megaloblastic bone marrow, immunodeficiency or when developmental delay and anemia coexist.

4.
Am J Hum Genet ; 104(6): 1223-1232, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31130282

RESUMEN

Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.


Asunto(s)
Mutación con Ganancia de Función , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión al GTP Monoméricas/genética , Síndrome de Noonan/etiología , Adulto , Niño , Femenino , Estudios de Asociación Genética , Células HEK293 , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Síndrome de Noonan/patología , Linaje , Conformación Proteica
5.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194818

RESUMEN

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/genética , Estudios de Asociación Genética , Mutación/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Humanos , Masculino , Sistema Nervioso/crecimiento & desarrollo , Fenotipo , Embarazo , Estructura Terciaria de Proteína
6.
Genes Chromosomes Cancer ; 57(5): 223-230, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29315962

RESUMEN

Germ-line interstitial deletions involving the 14q32 chromosomal region, resulting in 14q32 deletion syndrome, are rare. DICER1 is a recently described cancer-predisposition gene located at 14q32.13. We report the case of a male child with a ∼5.8 Mbp 14q32.13q32.2 germ-line deletion, which included the full DICER1 locus. We reviewed available clinical and pathological material, and conducted genetic analyses. In addition to having congenital dysmorphic features, the child developed multiple DICER1 syndrome-related tumors before age 5 y: a pediatric cystic nephroma (pCN), a ciliary body medulloepithelioma (CBME), and a small lung cyst (consistent with occult pleuropulmonary blastoma Type I/Ir cysts seen in DICER1 mutation carriers). He also developed a cerebral spindle-cell sarcoma with myogenous differentiation. Our investigations revealed that the deletion encompassed 31 protein-coding genes. In addition to the germ-line DICER1 deletion, somatic DICER1 RNase IIIb mutations were found in the CBME (c.5437G > A, p.E1813K), pCN (c.5425G > A, p.G1809R), and sarcoma (c.5125G > A, p.D1709N). The sarcoma also harbored a somatic TP53 mutation: c.844C > T, p.R282W. Additional copy number alterations were identified in the CBME and sarcoma using an OncoScan array. Among the 8 cases with molecularly-defined 14q32 deletions involving DICER1 and for whom phenotypic information is available, our patient and one other developed DICER1-related tumors. Biallelic DICER1 mutations have not previously been reported to cause cerebral sarcoma, which now may be considered a rare manifestation of the DICER1 syndrome. Our study shows that DICER1-related tumors can occur in children with 14q32 deletions and suggests surveillance for such tumors may be warranted.


Asunto(s)
Deleción Cromosómica , ARN Helicasas DEAD-box/genética , Síndromes Neoplásicos Hereditarios/genética , Ribonucleasa III/genética , Niño , Cromosomas Humanos Par 14 , Mutación de Línea Germinal , Humanos , Masculino , Eliminación de Secuencia
7.
Am J Med Genet A ; 158A(3): 547-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22307766

RESUMEN

Haploinsufficiency of ANKRD11 encoding ankyrin repeat domain-containing protein 11 was recently reported as the cause of a syndrome due to microdeletion, characterized by intellectual disability with minor facial anomalies and short stature. Most recently, intragenic mutations of ANKRD11 were found in a cohort of patients with KBG syndrome. KBG is an autosomal dominant intellectual disability syndrome characterized by short stature, characteristic facial appearance, macrodontia, and skeletal anomalies. It remains unknown if deletion of the entire ANKRD11 causes KBG syndrome. We present a mother and child with a heterozygous 365 Kb deletion at 16q24.3 containing ANKRD11, ZNF778, and SPG7 genes. The child presented with developmental delay, facial anomalies, hand anomalies, and a congenital heart defect. The mother has short stature, facial anomalies, macrodontia, hand anomalies, and learning disability. Both individuals had many findings reported in KBG syndrome and the family met the suggested diagnostic criteria. However, typical macrodontia with fused incisors, costovertebral anomalies, and delayed bone age were not present. We conclude that microdeletions involving ANKRD11 result in a phenotype similar to that of KBG syndrome. © 2012 Wiley Periodicals, Inc.


Asunto(s)
Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Cromosomas Humanos Par 16 , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Anomalías Dentarias/genética , Adulto , Preescolar , Hibridación Genómica Comparativa , Facies , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA