Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Med Sci ; 68(2): 359-365, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37757663

RESUMEN

Prostate cancer (PC) is the second most common cancer in men worldwide. Homologous recombination repair (HRR) gene defects have been identified in a significant proportion of metastatic castration-resistant PC (mCRPC) and are associated with an increased risk of PC and more aggressive PC. Importantly, it has been well-documented that poly ADP-ribose polymerase (PARP) inhibition in cells with HR deficiency (HRD) can cause cell death. This has been exploited for the targeted treatment of PC patients with HRD by PARP inhibitors. Moreover, it has been shown that platinum-based chemotherapy is more effective in mCRPC patients with HRR gene alterations. This review highlights the prognosis and therapeutic implications of HRR gene alterations in PC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Reparación del ADN por Recombinación , Masculino , Humanos , Reparación del ADN por Recombinación/genética , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
2.
Cell Mol Biol (Noisy-le-grand) ; 68(8): 22-26, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36800845

RESUMEN

Genetic alterations in the homologous recombination repair (HRR) genes are associated with an increased risk of prostate cancer development, and patients harboring these mutations can benefit from targeted therapy. The main aim of this study is to identify genetic alterations in HRR genes as a potential target for targeted treatment. In this study, targeted next generation sequencing (NGS) is used to analyze mutations in the protein-coding regions of the 27 genes involved in HRR and mutations in hotspots of 5 cancer-associated genes in four FFPE samples and three blood samples from prostate cancer patients. We identified two mutations in TP53 and KRAS. We also identified four conflicting interpretations of pathogenicity variants in BRCA2, STK11 genes and one variant of uncertain significance in the RAD51B gene. In addition, we detected one drug response variant in TP53, and two novel variants in CDK12 and ATM. Our results revealed some actionable pathogenic and potential pathogenic variants that may be associated with response to the Poly (ADP-ribose) polymerase (PARP) inhibitor treatment. More studies in a larger cohort are needed to evaluate and determine the association of HRR mutations with prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Reparación del ADN por Recombinación , Masculino , Humanos , Reparación del ADN por Recombinación/genética , Neoplasias de la Próstata/genética , Mutación
3.
Front Immunol ; 9: 2569, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30473697

RESUMEN

T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virosis/inmunología , Animales , Linfocitos T CD8-positivos/virología , Enfermedad Crónica , Humanos , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA