Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
2.
Expert Opin Drug Discov ; 18(5): 539-549, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37051616

RESUMEN

INTRODUCTION: Fibromyalgia (FM) is a chronic pain condition characterized by widespread pain and complex comorbidities with a high unmet medical need. Given few past successes in the launch of analgesics with new mechanisms, the implementation of practical biomarkers for drug discovery and development would be necessary to rationally create innovative drugs for chronic pain conditions, including FM. AREAS COVERED: This review surveys the evidence on pathophysiology of FM and the findings regarding the pathophysiology-associated practical biomarker candidates in body fluids (e.g. blood) from the studies in FM patients. This review also summarizes the most commonly used animal models simulating key aspects of clinical FM features. Finally, a strategy for rationally creating innovative drugs for FM is discussed. EXPERT OPINION: Drug discovery and development for FM targeting immune dysregulation/inflammation would be a viable strategy based on the availability of the pathophysiology-associated practical biomarkers (e.g. serum interleukins), which monitor the efficacy of interventions and/or identify responders based on the matching pathophysiology throughout the process from animal models to patients. This strategy could lead to a breakthrough in the development of drugs for FM, a chronic pain condition.


Asunto(s)
Dolor Crónico , Fibromialgia , Animales , Fibromialgia/tratamiento farmacológico , Dolor Crónico/tratamiento farmacológico , Descubrimiento de Drogas , Biomarcadores , Modelos Animales
3.
Igaku Butsuri ; 43(4): 125-135, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-38417890

RESUMEN

The radiotherapy is performed with the aim of delivering the optimal dose to the target volume with minimal side effect of surrounding normal tissue. For this purpose, quality assurance is essential to ensure that the target volume is correctly irradiated in the optimal geometrical arrangement, and the absorbed dose evaluation is essential to ensure that the prescribed dose is correctly delivered. The absorbed doses are generally evaluated using a small cavity ionization chamber that utilizes gas ionization. For the evaluation of absorbed dose to water using ionization chambers, the national dose and charge standards, ionization chambers and electrometer calibration systems are required. And it is also required standard dosimetry protocol that recommend conditions such as fields, depths, and optimal ionization chambers for the measurement, as well as reliable physical data. This manuscript reviews the transition of standard dosimetry of absorbed dose to water in external beam radiotherapy, including the background of dose standards, ionization chamber calibration systems, units, and physical constants.


Asunto(s)
Radiometría , Agua , Radiometría/métodos , Calibración
4.
ACS Omega ; 7(35): 30768-30772, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092607

RESUMEN

Ceramic architectures based on chemical vapor deposition (CVD) are used to create unique crystal structures, morphologies, and properties. This study proposed room-temperature THz gas sensing using terahertz time-domain spectroscopy (THz-TDS) with ceramic architectures. We synthesized ceramic films on porous glass. Zinc oxide films were created using atmospheric CVD and amorphous carbon nitride films using the dissociative excitation reaction of BrCN with metastable Ar atoms. The transmission method was used in THz-TDS. A stainless hand-made gas cell with a Si window was applied for THz gas sensing. We defined "phase delay" equals VOC sensing response amount of sensing materials at each duration. Ppm-order THz gas sensing was performed.

5.
Front Mol Neurosci ; 15: 911122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813063

RESUMEN

Mechanical allodynia (pain produced by innocuous stimuli such as touch) is the main symptom of neuropathic pain. Its underlying mechanism remains to be elucidated, but peripheral nerve injury (PNI)-induced malfunction of neuronal circuits in the central nervous system, including the spinal dorsal horn (SDH), is thought to be involved in touch-pain conversion. Here, we found that intra-SDH injection of adeno-associated viral vectors including a prodynorphin promoter (AAV-PdynP) captured a subset of neurons that were mainly located in the superficial laminae, including lamina I, and exhibited mostly inhibitory characteristics. Using transgenic rats that enable optogenetic stimulation of touch-sensing Aß fibers, we found that the light-evoked paw withdrawal behavior and aversive responses after PNI were attenuated by selective ablation of AAV-PdynP-captured SDH neurons. Notably, the ablation had no effect on withdrawal behavior from von Frey filaments. Furthermore, Aß fiber stimulation did not excite AAV-PdynP+ SDH neurons under normal conditions, but after PNI, this induced excitation, possibly due to enhanced Aß fiber-evoked excitatory synaptic inputs and elevated resting membrane potentials of these neurons. Moreover, the chemogenetic silencing of AAV-PdynP+ neurons of PNI rats attenuated the Aß fiber-evoked paw withdrawal behavior and c-FOS expression in superficial SDH neurons. Our findings suggest that PNI renders AAV-PdynP-captured neurons excitable to Aß fiber stimulation, which selectively contributes to the conversion of Aß fiber-mediated touch signal to nociceptive. Thus, reducing the excitability of AAV-PdynP-captured neurons may be a new option for the treatment of neuropathic allodynia.

6.
Phys Med ; 91: 105-116, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34742097

RESUMEN

PURPOSE: To increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT). METHODS: TI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose. RESULTS: HI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses. CONCLUSION: Our proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.


Asunto(s)
Hemangiosarcoma , Radioterapia de Intensidad Modulada , Hemangiosarcoma/radioterapia , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Cuero Cabelludo
7.
Radiat Oncol ; 16(1): 175, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503533

RESUMEN

BACKGROUND: Contour delineation, a crucial process in radiation oncology, is time-consuming and inaccurate due to inter-observer variation has been a critical issue in this process. An atlas-based automatic segmentation was developed to improve the delineation efficiency and reduce inter-observer variation. Additionally, automated segmentation using artificial intelligence (AI) has recently become available. In this study, auto-segmentations by atlas- and AI-based models for Organs at Risk (OAR) in patients with prostate and head and neck cancer were performed and delineation accuracies were evaluated. METHODS: Twenty-one patients with prostate cancer and 30 patients with head and neck cancer were evaluated. MIM Maestro was used to apply the atlas-based segmentation. MIM Contour ProtégéAI was used to apply the AI-based segmentation. Three similarity indices, the Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean distance to agreement (MDA), were evaluated and compared with manual delineations. In addition, radiation oncologists visually evaluated the delineation accuracies. RESULTS: Among patients with prostate cancer, the AI-based model demonstrated higher accuracy than the atlas-based on DSC, HD, and MDA for the bladder and rectum. Upon visual evaluation, some errors were observed in the atlas-based delineations when the boundary between the small bowel or the seminal vesicle and the bladder was unclear. For patients with head and neck cancer, no significant differences were observed between the two models for almost all OARs, except small delineations such as the optic chiasm and optic nerve. The DSC tended to be lower when the HD and the MDA were smaller in small volume delineations. CONCLUSIONS: In terms of efficiency, the processing time for head and neck cancers was much shorter than manual delineation. While quantitative evaluation with AI-based segmentation was significantly more accurate than atlas-based for prostate cancer, there was no significant difference for head and neck cancer. According to the results of visual evaluation, less necessity of manual correction in AI-based segmentation indicates that the segmentation efficiency of AI-based model is higher than that of atlas-based model. The effectiveness of the AI-based model can be expected to improve the segmentation efficiency and to significantly shorten the delineation time.


Asunto(s)
Inteligencia Artificial , Nube Computacional , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de la Próstata/radioterapia , Atlas como Asunto , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Masculino , Variaciones Dependientes del Observador , Órganos en Riesgo , Neoplasias de la Próstata/diagnóstico por imagen
8.
Adv Mater ; 33(37): e2100793, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34331320

RESUMEN

Lithium (Li)-metal anodes are of great promise for next-generation batteries due to their high theoretical capacity and low redox potential. However, Li-dendrite growth during cycling imposes a tremendous safety concern on the practical application of Li-metal anodes. Herein, an effective approach to suppress Li-dendrite growth by coating a polypropylene (PP) separator with a thin layer of ultrastrong diamond-like carbon (DLC) is reported. Theoretical calculations indicate that the DLC coating layer undergoes in situ chemical lithiation once assembled with the lithium-metal anode, transforming the DLC/PP separator into an excellent 3D Li-ion conductor. This in situ lithiated DLC/PP separator can not only mechanically suppress Li-dendrite growth by its intrinsically high modulus (≈100 GPa), but also uniformly redistributes Li ions to render dendrite-free lithium deposition. The twofold effects of the DLC/PP separator result in stable cycling of lithium plating/stripping (over 4500 h) at a high current density of 3 mA cm-2 . Remarkably, this approach enables more than 1000 stable cycles at 5 C with a capacity retention of ≈71% in a Li || LiFePO4 coin cell and more than 200 stable cycles at 0.2 C in a Li || LiNi0.5 Co0.3 Mn0.2 O2 pouch cell with cathode mass loading of ≈9 mg cm-2 .

9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431693

RESUMEN

A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aß fibers. However, the mechanism by which Aß fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aß fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aß fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aß fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aß fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aß fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.


Asunto(s)
Interneuronas/fisiología , Neuralgia/genética , Asta Dorsal de la Médula Espinal/fisiología , Percepción del Tacto/fisiología , Animales , Hiperalgesia/genética , Hiperalgesia/patología , Masculino , Mecanorreceptores/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Nocicepción/fisiología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Asta Dorsal de la Médula Espinal/patología , Tacto/fisiología , Percepción del Tacto/genética , Ácido gamma-Aminobutírico/metabolismo
10.
Brain Behav Immun ; 89: 389-399, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32717400

RESUMEN

Chronic pain is one of the main symptoms of spinal disorders such as spinal canal stenosis. A major cause of this pain is related to compression of the spinal cord, and chronic pain can develop at the level of the compressed spinal segment. However, in many patients chronic pain arises in an area that does not correspond to the compressed segment, and the underlying mechanism involved remains unknown. This was investigated in the present study using a mouse model of spinal cord compression in which mechanical pain of the hindpaws develops after compression of the first lumbar segment (L1) of the spinal cord. Compression induced the activation of astrocytes in the L1 spinal dorsal horn (SDH)-but not the L4 SDH that corresponds to the hindpaws-and activated signal transducer and activator of transcription 3 (STAT3). Suppressing reactive astrocytes by expressing a dominant negative form of STAT3 (dnSTAT3) in the compressed SDH prevented mechanical pain. Expression of interleukin (IL)-6 was also upregulated in the compressed SDH, and it was inhibited by astrocytic expression of dnSTAT3. Intrathecal administration of a neutralizing anti-IL-6 antibody reversed the compression-induced mechanical pain. These results suggest that astrocytic STAT3 and IL-6 in the compressed SDH are involved in remote mechanical pain observed in the lower extremity, and may provide a target for treating chronic pain associated with spinal cord compression such as spinal canal stenosis.


Asunto(s)
Interleucina-6 , Factor de Transcripción STAT3 , Astrocitos/metabolismo , Humanos , Hiperalgesia , Interleucina-6/metabolismo , Extremidad Inferior , Dolor , Factor de Transcripción STAT3/metabolismo , Médula Espinal/metabolismo
11.
J Pharmacol Sci ; 143(3): 133-140, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32253104

RESUMEN

Endogenous noradrenaline (NA) has multiple bioactive functions and, in the central nervous system (CNS), has been implicated in modulating neuroinflammation via ß-adrenergic receptors (ß-ARs). Microglia, resident macrophages in the CNS, have a central role in the brain immune system and have been reported to be activated by NA. However, intracellular signaling mechanisms of the AR-mediated proinflammatory responses of microglia are not fully understood. Using a rapid and stable in vitro reporter assay system to evaluate IL-1ß production in microglial BV2 cells, we found that NA and the ß-AR agonist isoproterenol upregulated the IL-1ß reporter activity. This effect was suppressed by ß-AR antagonists. We further examined the involvement of EPAC (exchange protein directly activated by cAMP) and TPL2 (tumor progression locus 2, MAP3K8) and found that inhibitors for EPAC and TPL2 reduced AR agonist-induced IL-1ß reporter activity. These inhibitors also suppressed NA-induced endogenous Il1b mRNA expression and IL-1ß protein production. Our results suggest that EPAC and TPL2 are involved in ß-AR-mediated IL-1ß production in microglial cells, and extend our understanding of its intracellular signaling mechanism.


Asunto(s)
Acetilcisteína/análogos & derivados , Eritromicina/análogos & derivados , Interleucina-1beta/metabolismo , Quinasas Quinasa Quinasa PAM/farmacología , Microglía/metabolismo , Proteínas Proto-Oncogénicas/farmacología , Acetilcisteína/farmacología , Agonistas Adrenérgicos beta/farmacología , Animales , Células Cultivadas , Eritromicina/farmacología , Expresión Génica/efectos de los fármacos , Interleucina-1beta/genética , Isoproterenol/farmacología , Quinasas Quinasa Quinasa PAM/fisiología , Ratones , Norepinefrina/farmacología , Norepinefrina/fisiología , Proteínas Proto-Oncogénicas/fisiología , Receptores Adrenérgicos beta , Transducción de Señal , Regulación hacia Arriba/efectos de los fármacos
12.
J Radiat Res ; 61(3): 447-456, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32100831

RESUMEN

Deep inspiration breath hold (DIBH) is a common method used worldwide for reducing the radiation dose to the heart. However, few studies have reported on the relationship between dose reduction and patient-specific parameters. The aim of this study was to compare the reductions of heart dose and volume using DIBH with the dose/volume of free breathing (FB) for patients with left-sided breast cancer and to analyse patient-specific dose reduction parameters. A total of 85 Asian patients who underwent whole-breast radiotherapy after breast-conserving surgery were recruited. Treatment plans for FB and DIBH were retrospectively generated by using an automated breast planning tool with a two-field tangential intensity-modulated radiation therapy technique. The prescribed dose was 50 Gy in 25 fractions. The dosimetric parameters (e.g., mean dose and maximum dose) in heart and lung were extracted from the dose-volume histogram. The relationships between dose-volume data and patient-specific parameters, such as age, body mass index (BMI), and inspiratory volume, were analyzed. The mean heart doses for the FB and DIBH plans were 1.56 Gy and 0.75 Gy, respectively, a relative reduction of 47%. There were significant differences in all heart dosimetric parameters (p < 0.001). For patients with a high heart dose in the FB plan, a relative reduction of the mean heart dose correlated with inspiratory volume (r = 0.646). There was correlation between the relative reduction of mean heart dose and BMI (r = -0.248). We recommend considering the possible feasibility of DIBH in low BMI patients because the degree of benefit from DIBH varied with BMI.


Asunto(s)
Neoplasias de la Mama/radioterapia , Corazón/efectos de la radiación , Mastectomía Segmentaria/métodos , Radiometría , Neoplasias de Mama Unilaterales/radioterapia , Adulto , Anciano , Índice de Masa Corporal , Neoplasias de la Mama/complicaciones , Contencion de la Respiración , Simulación por Computador , Femenino , Humanos , Inhalación , Pulmón/efectos de la radiación , Persona de Mediana Edad , Obesidad/complicaciones , Reconocimiento de Normas Patrones Automatizadas , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Neoplasias de Mama Unilaterales/complicaciones
13.
J Allergy Clin Immunol ; 145(1): 183-191.e10, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31787267

RESUMEN

BACKGROUND: Chronic itch is a highly debilitating symptom among patients with inflammatory skin diseases. Recent studies have revealed that gastrin-releasing peptide (GRP) and its receptor (gastrin-releasing peptide receptor [GRPR]) in the spinal dorsal horn (SDH) play a central role in itch transmission. OBJECTIVE: We aimed to investigate whether GRP-GRPR signaling is altered in SDH neurons in a mouse model of chronic itch and to determine the potential mechanisms underlying these alterations. METHODS: Patch-clamp recordings from enhanced green fluorescent protein (EGFP)-expressing (GRPR+) SDH neurons were used to examine GRP-GRPR signaling in spinal cord slices obtained from Grpr-EGFP mice. Immunohistochemical, genetic (gene expression and editing through adeno-associated virus vectors), and behavioral approaches were also used for in vivo experiments. RESULTS: We observed potentiation of GRP-evoked excitation in the GRPR+ SDH neurons of mice with contact dermatitis, without concomitant changes in GRPR expression. Interestingly, increases in excitation were attenuated by suppressing the reactive state of SDH astrocytes, which are known to be reactive in patients with chronic itch conditions. Furthermore, CRISPR-Cas9-mediated astrocyte-selective in vivo editing of a gene encoding lipocalin-2 (LCN2), an astrocytic factor implicated in chronic itch, suppressed increases in GRP-induced excitation of GRPR+ neurons, repetitive scratching, and skin damage in mice with contact dermatitis. Moreover, LCN2 potentiated GRP-induced excitation of GRPR+ neurons in normal mice. CONCLUSION: Our findings indicate that, under chronic itch conditions, the GRP-induced excitability of GRPR+ SDH neurons is enhanced through a non-cell-autonomous mechanism involving LCN2 derived from reactive astrocytes.


Asunto(s)
Astrocitos/inmunología , Péptido Liberador de Gastrina/inmunología , Células del Asta Posterior/inmunología , Prurito/inmunología , Receptores de Bombesina/inmunología , Transducción de Señal/inmunología , Animales , Astrocitos/patología , Enfermedad Crónica , Modelos Animales de Enfermedad , Péptido Liberador de Gastrina/genética , Masculino , Ratones , Ratones Transgénicos , Células del Asta Posterior/patología , Prurito/genética , Prurito/patología , Receptores de Bombesina/genética , Transducción de Señal/genética
14.
Biochem Pharmacol ; 169: 113614, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31445020

RESUMEN

Chronic pain is a debilitating condition that often emerges as a clinical symptom of inflammatory diseases. It has therefore been widely accepted that the immune system critically contributes to the pathology of chronic pain. Microglia, a type of immune cell in the central nervous system, has attracted researchers' attention because in rodent models of neuropathic pain that develop strong mechanical and thermal hypersensitivity, histologically activated microglia are seen in the dorsal horn of spinal cord. Several kinds of cytokines are generated by damaged peripheral neurons and contribute to microglial activation at the distal site of the injury where damaged neurons send their projections. Microglia are known as key players in the surveillance of the local environment in the central nervous system and have a significant role of circuit remodeling by physical contact to synapses. Key molecules for the pathology of neuropathic pain exist in the activated microglia, but the factors driving pain-inducible microglial activation remain unclear. Therefore, to find the key molecules inducing activation of spinal microglia and to figure out the precise mechanism of how microglia modulate neuronal circuits in the spinal cord to form chronic pain state is a critical step for developing effective treatment of neuropathic pain.


Asunto(s)
Comunicación Celular , Microglía/fisiología , Neuralgia/etiología , Neuronas/fisiología , Adenosina Trifosfato/fisiología , Animales , Proliferación Celular , Quimiocinas/fisiología , Dolor Crónico/etiología , Humanos , Factor Estimulante de Colonias de Macrófagos/fisiología
15.
J Appl Clin Med Phys ; 20(8): 98-104, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31355984

RESUMEN

Respiratory-gated volumetric modulated arc therapy (gated VMAT) involves further complexities to the dose delivery process because the gantry rotation must repeatedly stop and restart according to the gating signals. In previous studies, the gantry rotation performances were evaluated by the difference between the plan and the machine log. However, several reports pointed out that log analysis does not sufficiently replicate the machine performance. In this report, a measurement-based quality assurance of the relation between the gantry angle and gate-on or gate-off using triggered kilovoltage imaging and a cylinder phantom with 16 ball bearings is proposed. For the analysis, an in-house program that estimates and corrects the phantom offset was developed. The gantry angle in static and gated arc delivery was compared between the machine log and the proposed method. The gantry was set every 5 deg through its full motion range in static delivery, and rotated at three speeds (2, 4 and 6 deg s-1 ) with different gating intervals (1.5 or 3.0 s) in gated arc delivery. The mean and standard deviation of the angular differences between the log and the proposed method was -0.05 deg ± 0.12 deg in static delivery. The mean of the angular difference was within ±0.10 deg and the largest difference was 0.41 deg in gated arc delivery. The log records the output of the encoder so that miscalibration and mechanical sagging will be disregarded. However, the proposed method will help the users to detect the mechanical issues due to the repeated gantry stops and restarts in gated VMAT.


Asunto(s)
Neoplasias/radioterapia , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Control de Calidad , Dosificación Radioterapéutica , Respiración , Rayos X
16.
Purinergic Signal ; 15(1): 27-35, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30684150

RESUMEN

P2X purinergic receptors are ATP-driven ionic channels expressed as trimers and showing various functions. A subtype, the P2X4 receptor present on microglial cells is highly involved in neuropathic pain. In this study, in order to prepare antibodies recognizing the native structure of rat P2X4 (rP2X4) receptor, we immunized mice with rP2X4's head domain (rHD, Gln111-Val167), which possesses an intact structure stabilized by S-S bond formation (Igawa and Abe et al. FEBS Lett. 2015), as an antigen. We generated five monoclonal antibodies with the ability to recognize the native structure of its head domain, stabilized by S-S bond formation. Site-directed mutagenesis revealed that Asn127 and Asp131 of the rHD, in which combination of these amino acid residues is only conserved in P2X4 receptor among P2X family, were closely involved in the interaction between rHD and these antibodies. We also demonstrated the antibodies obtained here could detect rP2X4 receptor expressed in 1321N1 human astrocytoma cells.


Asunto(s)
Anticuerpos Monoclonales , Receptores Purinérgicos P2X4 , Animales , Humanos , Ratones , Dominios Proteicos , Ratas , Receptores Purinérgicos P2X4/análisis , Receptores Purinérgicos P2X4/química
17.
Int J Cancer ; 145(8): 2107-2113, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30515800

RESUMEN

Oxaliplatin, which is widely used as chemotherapy for certain solid cancers, frequently causes peripheral neuropathy. Commonly described neuropathic symptoms include aberrant sensations such as mechanical allodynia (hypersensitivity to normally innocuous stimuli). Although oxaliplatin neuropathy is a dose-limiting toxicity, there are no established preventive strategies available at present. By screening several sets of small-molecule chemical libraries (more than 3,000 compounds in total) using a newly established in vitro high-throughput phenotypic assay, we identified fulvestrant, a clinically approved drug for the treatment of breast cancer in postmenopausal women, as having a protective effect on oxaliplatin-induced neuronal damage. Furthermore, histological and behavioural analyses using a rat model of oxaliplatin neuropathy demonstrated the in vivo efficacy of fulvestrant to prevent oxaliplatin-induced axonal degeneration of the sciatic nerve and mechanical allodynia. Furthermore, fulvestrant did not interfere with oxaliplatin-induced cytotoxicity against cancer cells. Thus, our findings reveal a previously unrecognised pharmacological effect of fulvestrant to prevent oxaliplatin-induced painful peripheral neuropathy without impairing its cytotoxicity against cancer cells and may represent a novel prophylactic option for patients receiving oxaliplatin chemotherapy.


Asunto(s)
Fulvestrant/farmacología , Hiperalgesia/prevención & control , Neuronas/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/prevención & control , Animales , Línea Celular , Hibridomas , Hiperalgesia/inducido químicamente , Masculino , Ratones , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Oxaliplatino , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Ratas Sprague-Dawley
18.
Yakugaku Zasshi ; 138(8): 1027-1031, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30068843

RESUMEN

Neuropathic pain associated with cancer, diabetic neuropathy, and postherpetic neuralgia is a type of intractable chronic pain characterized by mechanical allodynia and abnormal pain hypersensitivity evoked by innocuous stimuli. However, this disorder has no specific treatment. We previously showed that the purinergic receptor P2X4 (P2X4R), a subtype of ATP-gated nonselective cation channels, is highly upregulated in spinal microglia after peripheral nerve injury, and blocking the function of P2X4R reverses mechanical allodynia. In the present study, we screened a chemical library of 1979 clinically approved compounds (a gift from the Drug Discovery Initiative at the University of Tokyo) aimed at achieving "Eco-Pharma," which refers to seeking new effects of existing drugs. We demonstrated that duloxetine, a serotonin and noradrenaline reuptake inhibitor, has an inhibitory effect on rat and human P2X4R. In rat primary cultured microglial cells, duloxetine also inhibited P2X4R-mediated responses. Moreover, intrathecal administration of duloxetine in a model of neuropathic pain reversed nerve injury-induced mechanical allodynia. Based on those results, we suggest that the inhibition of P2X4R expressed in microglial cells may be involved in the antiallodynic effect of duloxetine in neuropathic pain. Furthermore, in this review, we discuss a new strategy for drug discovery called "Green Pharma" (a merger of "Eco-Pharma" and "Green chemistry" and referring to the development of eco-friendly pharmaceuticals).


Asunto(s)
Descubrimiento de Drogas , Neuralgia/tratamiento farmacológico , Neuroglía , Receptores Purinérgicos P2/metabolismo , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas/tendencias , Clorhidrato de Duloxetina/administración & dosificación , Clorhidrato de Duloxetina/farmacología , Humanos , Hiperalgesia , Inyecciones Espinales , Terapia Molecular Dirigida , Antagonistas del Receptor Purinérgico P2X , Ratas , Receptores Purinérgicos P2X4/metabolismo
19.
J Appl Clin Med Phys ; 19(4): 103-113, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29785725

RESUMEN

In this study, the optimum density scaling factors of phantom materials for a commercially available three-dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm2 with the same geometry, tissue-phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle3 ), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (µeff ) were obtained from the TPRs. The ratios of µeff in phantom and water ((µeff )pl,water ) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (µeff )pl,water . The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x-ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4.


Asunto(s)
Fantasmas de Imagen , Algoritmos , Método de Montecarlo , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada
20.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29468190

RESUMEN

Neuropathic pain is caused by peripheral nerve injury (PNI). One hallmark symptom is allodynia (pain caused by normally innocuous stimuli), but its mechanistic underpinning remains elusive. Notably, whether selective stimulation of non-nociceptive primary afferent Aß fibers indeed evokes neuropathic pain-like sensory and emotional behaviors after PNI is unknown, because of the lack of tools to manipulate Aß fiber function in awake, freely moving animals. In this study, we used a transgenic rat line that enables stimulation of non-nociceptive Aß fibers by a light-activated channel (channelrhodopsin-2; ChR2). We found that illuminating light to the plantar skin of these rats with PNI elicited pain-like withdrawal behaviors that were resistant to morphine. Light illumination to the skin of PNI rats increased the number of spinal dorsal horn (SDH) Lamina I neurons positive to activity markers (c-Fos and phosphorylated extracellular signal-regulated protein kinase; pERK). Whole-cell recording revealed that optogenetic Aß fiber stimulation after PNI caused excitation of Lamina I neurons, which were normally silent by this stimulation. Moreover, illuminating the hindpaw of PNI rats resulted in activation of central amygdaloid neurons and produced an aversion to illumination. Thus, these findings provide the first evidence that optogenetic activation of primary afferent Aß fibers in PNI rats produces excitation of Lamina I neurons and neuropathic pain-like behaviors that were resistant to morphine treatment. This approach may provide a new path for investigating circuits and behaviors of Aß fiber-mediated neuropathic allodynia with sensory and emotional aspects after PNI and for discovering novel drugs to treat neuropathic pain.


Asunto(s)
Emociones/fisiología , Neuralgia/fisiopatología , Neuralgia/psicología , Neuronas Aferentes/fisiología , Nervios Espinales/lesiones , Animales , Reacción de Prevención/fisiología , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Vértebras Lumbares , Masculino , Neuralgia/etiología , Neuralgia/patología , Neuronas Aferentes/patología , Optogenética/métodos , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Transgénicas , Piel/fisiopatología , Nervios Espinales/patología , Nervios Espinales/fisiopatología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA