Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain Sci ; 14(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928612

RESUMEN

Cerebral intraparenchymal hemorrhage due to electrode implantation (CIPHEI) is a rare but serious complication of deep brain stimulation (DBS) surgery. This study retrospectively investigated a large single-center cohort of DBS implantations to calculate the frequency of CIPHEI and identify patient- and procedure-related risk factors for CIPHEI and their potential interactions. We analyzed all DBS implantations between January 2013 and December 2021 in a generalized linear model for binomial responses using bias reduction to account for sparse sampling of CIPHEIs. As potential risk factors, we considered age, gender, history of arterial hypertension, level of invasivity, types of micro/macroelectrodes, and implanted DBS electrodes. If available, postoperative coagulation and platelet function were exploratorily assessed in CIPHEI patients. We identified 17 CIPHEI cases across 839 electrode implantations in 435 included procedures in 418 patients (3.9%). Exploration and cross-validation analyses revealed that the three-way interaction of older age (above 60 years), high invasivity (i.e., use of combined micro/macroelectrodes), and implantation of directional DBS electrodes accounted for 82.4% of the CIPHEI cases. Acquired platelet dysfunction was present only in one CIPHEI case. The findings at our center suggested implantation of directional DBS electrodes as a new potential risk factor, while known risks of older age and high invasivity were confirmed. However, CIPHEI risk is not driven by the three factors alone but by their combined presence. The contributions of the three factors to CIPHEI are hence not independent, suggesting that potentially modifiable procedural risks should be carefully evaluated when planning DBS surgery in patients at risk.

2.
Acta Neurochir (Wien) ; 166(1): 145, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514531

RESUMEN

PURPOSE: This study is to report some preliminary surgical considerations and outcomes after the first implantations of a new and commercially available implantable epicranial stimulation device for focal epilepsy. METHODS: We retrospectively analyzed data from clinical notes. Outcome parameters were as follows: wound healing, surgery time, and adverse events. RESULTS: Five patients were included (17-52 y/o; 3 female). Epicranial systems were uneventfully implanted under neuronavigation guidance. Some minor adverse events occurred. Wound healing in primary intention was seen in all patients. Out of these surgeries, certain concepts were developed: Skin incisions had to be significantly larger than expected. S-shaped incisions appeared to be a good choice in typical locations behind the hairline. Preoperative discussions between neurologist and neurosurgeon are mandatory in order to allow for the optimal coverage of the epileptogenic zone with the electrode geometry. CONCLUSION: In this first small series, we were able to show safe implantation of this new epicranial stimulation device. The use of neuronavigation is strongly recommended. The procedure is simple but not trivial and ideally belongs in the hands of a neurosurgeon.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Femenino , Epilepsia/cirugía , Estudios Retrospectivos , Epilepsia Refractaria/cirugía , Corteza Cerebral , Electrodos Implantados , Resultado del Tratamiento
3.
Brain Stimul ; 16(2): 670-681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37028755

RESUMEN

BACKGROUND: Understanding prefrontal cortex projections to diencephalic-mesencephalic junction (DMJ), especially to subthalamic nucleus (STN) and ventral mesencephalic tegmentum (VMT) helps our comprehension of Deep Brain Stimulation (DBS) in major depression (MD) and obsessive-compulsive disorder (OCD). Fiber routes are complex and tract tracing studies in non-human primate species (NHP) have yielded conflicting results. The superolateral medial forebrain bundle (slMFB) is a promising target for DBS in MD and OCD. It has become a focus of criticism owing to its name and its diffusion weighted-imaging based primary description. OBJECTIVE: To investigate DMJ connectivity in NHP with a special focus on slMFB and the limbic hyperdirect pathway utilizing three-dimensional and data driven techniques. METHODS: We performed left prefrontal adeno-associated virus - tracer based injections in the common marmoset monkey (n = 52). Histology and two-photon microscopy were integrated into a common space. Manual and data driven cluster analyses of DMJ, subthalamic nucleus and VMT together, followed by anterior tract tracing streamline (ATTS) tractography were deployed. RESULTS: Typical pre- and supplementary motor hyperdirect connectivity was confirmed. The advanced tract tracing unraveled the complex connectivity to the DMJ. Limbic prefrontal territories directly projected to the VMT but not STN. DISCUSSION: Intricate results of tract tracing studies warrant the application of advanced three-dimensional analyses to understand complex fiber-anatomical routes. The applied three-dimensional techniques can enhance anatomical understanding also in other regions with complex fiber anatomy. CONCLUSION: Our work confirms slMFB anatomy and enfeebles previous misconceptions. The rigorous NHP approach strengthens the role of the slMFB as a target structure for DBS predominantly in psychiatric indications like MD and OCD.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Animales , Callithrix , Estimulación Encefálica Profunda/métodos , Haz Prosencefálico Medial , Mesencéfalo
4.
Neuromodulation ; 26(2): 302-309, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36424266

RESUMEN

INTRODUCTION: Recent developments in the postoperative evaluation of deep brain stimulation surgery on the group level warrant the detection of achieved electrode positions based on postoperative imaging. Computed tomography (CT) is a frequently used imaging modality, but because of its idiosyncrasies (high spatial accuracy at low soft tissue resolution), it has not been sufficient for the parallel determination of electrode position and details of the surrounding brain anatomy (nuclei). The common solution is rigid fusion of CT images and magnetic resonance (MR) images, which have much better soft tissue contrast and allow accurate normalization into template spaces. Here, we explored a deep-learning approach to directly relate positions (usually the lead position) in postoperative CT images to the native anatomy of the midbrain and group space. MATERIALS AND METHODS: Deep learning is used to create derived tissue contrasts (white matter, gray matter, cerebrospinal fluid, brainstem nuclei) based on the CT image; that is, a convolution neural network (CNN) takes solely the raw CT image as input and outputs several tissue probability maps. The ground truth is based on coregistrations with MR contrasts. The tissue probability maps are then used to either rigidly coregister or normalize the CT image in a deformable way to group space. The CNN was trained in 220 patients and tested in a set of 80 patients. RESULTS: Rigorous validation of such an approach is difficult because of the lack of ground truth. We examined the agreements between the classical and proposed approaches and considered the spread of implantation locations across a group of identically implanted subjects, which serves as an indicator of the accuracy of the lead localization procedure. The proposed procedure agrees well with current magnetic resonance imaging-based techniques, and the spread is comparable or even lower. CONCLUSIONS: Postoperative CT imaging alone is sufficient for accurate localization of the midbrain nuclei and normalization to the group space. In the context of group analysis, it seems sufficient to have a single postoperative CT image of good quality for inclusion. The proposed approach will allow researchers and clinicians to include cases that were not previously suitable for analysis.


Asunto(s)
Estimulación Encefálica Profunda , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos
5.
Acta Neurochir (Wien) ; 163(10): 2809-2824, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181083

RESUMEN

BACKGROUND: An increasing number of neurosurgeons use display of the dentato-rubro-thalamic tract (DRT) based on diffusion weighted imaging (dMRI) as basis for their routine planning of stimulation or lesioning approaches in stereotactic tremor surgery. An evaluation of the anatomical validity of the display of the DRT with respect to modern stereotactic planning systems and across different tracking environments has not been performed. METHODS: Distinct dMRI and anatomical magnetic resonance imaging (MRI) data of high and low quality from 9 subjects were used. Six subjects had repeated MRI scans and therefore entered the analysis twice. Standardized DICOM structure templates for volume of interest definition were applied in native space for all investigations. For tracking BrainLab Elements (BrainLab, Munich, Germany), two tensor deterministic tracking (FT2), MRtrix IFOD2 ( https://www.mrtrix.org ), and a global tracking (GT) approach were used to compare the display of the uncrossed (DRTu) and crossed (DRTx) fiber structure after transformation into MNI space. The resulting streamlines were investigated for congruence, reproducibility, anatomical validity, and penetration of anatomical way point structures. RESULTS: In general, the DRTu can be depicted with good quality (as judged by waypoints). FT2 (surgical) and GT (neuroscientific) show high congruence. While GT shows partly reproducible results for DRTx, the crossed pathway cannot be reliably reconstructed with the other (iFOD2 and FT2) algorithms. CONCLUSION: Since a direct anatomical comparison is difficult in the individual subjects, we chose a comparison with two research tracking environments as the best possible "ground truth." FT2 is useful especially because of its manual editing possibilities of cutting erroneous fibers on the single subject level. An uncertainty of 2 mm as mean displacement of DRTu is expectable and should be respected when using this approach for surgical planning. Tractographic renditions of the DRTx on the single subject level seem to be still illusive.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Imagen de Difusión Tensora , Temblor Esencial/terapia , Humanos , Reproducibilidad de los Resultados , Tálamo/diagnóstico por imagen , Tálamo/cirugía
6.
Neuroimage Clin ; 25: 102165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31954987

RESUMEN

BACKGROUND: Major depression (MD) and obsessive-compulsive disorder (OCD) are psychiatric diseases with a huge impact on individual well-being. Despite optimal treatment regiments a subgroup of patients remains treatment resistant and stereotactic surgery (stereotactic lesion surgery, SLS or Deep Brain Stimulation, DBS) might be an option. Recent research has described four networks related to MD and OCD (affect, reward, cognitive control, default network) but only on a cortical and the adjacent sub-cortical level. Despite the enormous impact of comparative neuroanatomy, animal science and stereotactic approaches a holistic theory of subcortical and cortical network interactions is elusive. Because of the dominant hierarchical rank of the neocortex, corticofugal approaches have been used to identify connections in subcortical anatomy without anatomical priors and in part confusing results. We here propose a different corticopetal approach by identifying subcortical networks and search for neocortical convergences thereby following the principle of phylogenetic and ontogenetic network development. MATERIAL AND METHODS: This work used a diffusion tensor imaging data from a normative cohort (Human Connectome Project, HCP; n = 200) to describe eight subcortical fiber projection pathways (PPs) from subthalamic nucleus (STN), substantia nigra (SNR), red nucleus (RN), ventral tegmental area (VTA), ventrolateral thalamus (VLT) and mediodorsal thalamus (MDT) in a normative space (MNI). Subcortical and cortical convergences were described including an assignment of the specific pathways to MD/OCD-related networks. Volumes of activated tissue for different stereotactic stimulation sites and procedures were simulated to understand the role of the distinct networks, with respect to symptoms and treatment of OCD and MD. RESULTS: The detailed course of eight subcortical PPs (stnPP, snrPP, rnPP, vlATR, vlATRc, mdATR, mdATRc, vtaPP/slMFB) were described together with their subcortical and cortical convergences. The anterior limb of the internal capsule can be subdivided with respect to network occurrences in ventral-dorsal and medio-lateral gradients. Simulation of stereotactic procedures for OCD and MD showed dominant involvement of mdATR/mdATRc (affect network) and vtaPP/slMFB (reward network). DISCUSSION: Corticofugal search strategies for the evaluation of stereotactic approaches without anatomical priors often lead to confusing results which do not allow for a clear assignment of a procedure to an involved network. According to our simulation of stereotactic procedures in the treatment of OCD and MD, most of the target regions directly involve the reward (and affect) networks, while side-effects can in part be explained with a co-modulation of the control network. CONCLUSION: The here proposed corticopetal approach of a hierarchical description of 8 subcortical PPs with subcortical and cortical convergences represents a new systematics of networks found in all different evolutionary and distinct parts of the human brain.


Asunto(s)
Trastorno Depresivo Mayor/patología , Imagen de Difusión Tensora/métodos , Cápsula Interna/patología , Mesencéfalo/patología , Neocórtex/patología , Red Nerviosa/patología , Trastorno Obsesivo Compulsivo/patología , Adulto , Estudios de Cohortes , Conectoma , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Cápsula Interna/diagnóstico por imagen , Mesencéfalo/diagnóstico por imagen , Neocórtex/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
7.
J Neurol Surg A Cent Eur Neurosurg ; 80(1): 44-48, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30290379

RESUMEN

INTRODUCTION: A 28-year-old man presented with a history of sensorineural deafness since early childhood treated with bilateral cochlear implants (CIs). He showed signs of debilitating dystonia that had been present since puberty. Dystonic symptoms, especially a protrusion of the tongue and bilateral hand tremor, had not responded to botulinum toxin therapy. We diagnosed Mohr-Tranebjaerg syndrome (MTS). METHODS AND MATERIAL: Deep brain stimulation (DBS) of the bilateral globus pallidus internus was performed predominantly with stereotaxic computed tomography angiography guidance under general anesthesia. Electrophysiology was used to identify the target regions and to guide DBS electrode placement. RESULTS: In the immediate postoperative course and stimulation, the patient showed marked improvement of facial, extremity, and cervical dystonia. More than 2 years after implantation, his dystonic symptoms had dramatically improved by 82%. DISCUSSION: MTS is a rare genetic disorder leading to sensorineural deafness, dystonia, and other symptoms. The use of DBS for the dystonia in MTS was previously described but not in the presence of bilateral CIs. CONCLUSION: DBS in MTS may be a viable option to treat debilitating dystonic symptoms. We describe successful DBS surgery, despite the presence of bilateral CIs, and stimulation therapy over 2 years.


Asunto(s)
Implantes Cocleares , Trastornos Sordoceguera/terapia , Estimulación Encefálica Profunda , Distonía/terapia , Globo Pálido , Pérdida Auditiva Sensorineural/complicaciones , Discapacidad Intelectual/terapia , Atrofia Óptica/terapia , Adulto , Anestesia General , Trastornos Sordoceguera/complicaciones , Distonía/complicaciones , Distonía/etiología , Pérdida Auditiva Sensorineural/terapia , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Atrofia Óptica/complicaciones , Resultado del Tratamiento
8.
Neuroimage Clin ; 20: 580-593, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186762

RESUMEN

Background: Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (slMFB) emerges as a - yet experimental - treatment for major depressive disorder (MDD) and other treatment refractory psychiatric diseases. First experiences have been reported from two open label pilot trials in major depression (MDD) and long-term effectiveness for MDD (50 months) has been reported. Objective: To give a detailed description of the surgical technique for DBS of the superolateral branch of the medial forebrain bundle (slMFB) in MDD. Methods: Surgical experience from bilateral implantation procedures in n = 24 patients with MDD is reported. The detailed procedure of tractography-assisted targeting together with detailed electrophysiology in 144 trajectories in the target region (recording and stimulation) is described. Achieved electrode positions were evaluated based on postoperative helical CT and fused to preoperative high resolution anatomical magnetic resonance imaging (MRI; Philips Medical Systems, Best, Netherlands), including the pre-operative diffusion tensor imaging (DTI) tractographic information (StealthViz DTI, Medtronic, USA; Framelink 5.0, Medtronic, USA). Midcommissural point (MCP) coordinates of effective contact (EC) location, together with angles of entry into the target region were evaluated. To investigate incidental stimulation of surrounding nuclei (subthalamic nucleus, STN; substantia nigra, SNr; and red nucleus, RN) as a possible mechanism, a therapeutic triangle (TT) was defined, located between these structures (based on MRI criteria in T2) and evaluated with respect to EC locations. Results: Bilateral slMFB DBS was performed in all patients. We identified an electrophysiological environment (defined by autonomic reaction, passive microelectrode recording, acute effects and oculomotor effects) that helps to identify the proper target site on the operation table. Postoperative MCP-evaluation of effective contacts (EC) shows a significant variability with respect to localization. Evaluation of the TT shows that responders will typically have their active contacts inside the triangle and that surrounding nuclei (STN, SNr, RN) are not directly hit by EC, indicating a predominant white matter stimulation. The individual EC position within the triangle cannot be predicted and is based on individual slMFB (tractography) geometry. There was one intracranial bleeding (FORESEE I study) during a first implantation attempt in a patient who later received full bilateral implantation. Typical oculomotor side effects are idiosyncratic for the target region and at inferior contacts. Conclusion: The detailed surgical procedure of slMFB DBS implantation has not been described before. The slMFB emerges as an interesting region for the treatment of major depression (and other psychiatric diseases) with DBS. So far it has only been successfully researched in open label clinical case series and in 15 patients published. Stimulation probably achieves its effect through direct white-matter modulation of slMFB fibers. The surgical implantation comprises a standardized protocol combining tractographic imaging based on DTI, targeting and electrophysiological evaluation of the target region. To this end, slMFB DBS surgery is in technical aspects comparable to typical movement disorder surgery. In our view, slMFB DBS should only be performed under tractographic assistance.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/cirugía , Imagen de Difusión Tensora/métodos , Haz Prosencefálico Medial/diagnóstico por imagen , Haz Prosencefálico Medial/cirugía , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Masculino , Microelectrodos , Persona de Mediana Edad
9.
JMIR Res Protoc ; 5(4): e244, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28007690

RESUMEN

BACKGROUND: Essential tremor is a movement disorder that can result in profound disability affecting the quality of life. Medically refractory essential tremor can be successfully reduced by deep brain stimulation (DBS) traditionally targeting the thalamic ventral intermediate nucleus (Vim). Although this structure can be identified with magnetic resonance (MR) imaging nowadays, Vim-DBS electrodes are still implanted in the awake patient with intraoperative tremor testing to achieve satisfactory tremor control. This can be attributed to the fact that the more effective target of DBS seems to be the stimulation of fiber tracts rather than subcortical nuclei like the Vim. There is evidence that current coverage of the dentatorubrothalamic tract (DRT) results in good tremor control in Vim-DBS. Diffusion tensor MR imaging (DTI) tractography-assisted stereotactic surgery targeting the DRT would therefore not rely on multiple trajectories and intraoperative tremor testing in the awake patient, bearing the potential of more patient comfort and reduced operation-related risks. This is the first randomized controlled trial comparing DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia with stereotactic surgery of thalamic/subthalamic region as conventionally used. OBJECTIVE: This clinical pilot trial aims at demonstrating safety of DTI tractography-assisted stereotactic surgery in general anesthesia and proving its equality compared to conventional stereotactic surgery with intraoperative testing in the awake patient. METHODS: The Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT) trial is a single-center investigator-initiated, randomized, controlled, observer-blinded trial. A total of 24 patients with medically refractory essential tremor will be randomized to either DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia or stereotactic surgery of the thalamic/subthalamic region as conventionally used. The primary objective is to assess the tremor reduction, obtained by the Fahn-Tolosa-Marin Tremor Rating Scale in the 2 treatment groups. Secondary objectives include (among others) assessing the quality of life, optimal electrode contact positions, and safety of the intervention. The study protocol has been approved by the independent ethics committee of the University of Freiburg. RESULTS: Recruitment to the DISTINCT trial opened in September 2015 and is expected to close in June 2017. At the time of manuscript submission the trial is open to recruitment. CONCLUSIONS: The DISTINCT trial is the first to compare DTI tractography-assisted stereotactic surgery with target point of the DRT in general anesthesia to stereotactic surgery of the thalamic/subthalamic region as conventionally used. It can serve as a cornerstone for the evolving technique of DTI tractography-assisted stereotactic surgery. CLINICALTRIAL: ClinicalTrials.gov NCT02491554; https://clinicaltrials.gov/ct2/show/NCT02491554 (Archived by WebCite at http://www.webcitation.org/6mezLnB9D). German Clinical Trials Register DRKS00008913; http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008913 (Archived by WebCite at http://www.webcitation.org/6mezCtxhS).

11.
Acta Neurochir (Wien) ; 153(12): 2361-3, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21984073

RESUMEN

Essential tremor (ET) is a neurological disorder that can be treated effectively by means of bilateral thalamic ventral intermediate nucleus (VIM) deep brain stimulation (DBS). We present a rare case of stimulation-dependent reversible ageusia that poses a therapeutic dilemma on the one hand and serves as an instructive example to elucidate the as yet incompletely defined gustatory pathways on the other. A 69-year-old patient with successful reduction of his disabling upper extremity ET experienced an almost complete but during stimulation cessation reversible ageusia under bilateral VIM DBS. An evaluation of diffusion tensor (DTI) neuroimaging studies was performed in order to detect effective electrode positions and volumes of activated tissue (VTA) in relation to the medial lemniscus (ML) and dentato-rubro-thalamic tract (DRT). Repeated subjective gustometry was conducted with differential manipulation of stimulation settings. This case report stresses the importance of fiber tracts for DBS surgery. Reconciled with previous findings in lesion cases, we assume the coexistence of decussating and non-decussating fibers in the gustatory tract combined with hemispheric dominance in the processing of gustatory information. A therapeutic option for this dilemma may be a patient-selectable stimulation program or bipolar stimulation establishing a smaller ovoid VTA.


Asunto(s)
Ageusia/fisiopatología , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Complicaciones Intraoperatorias/fisiopatología , Núcleos Talámicos Ventrales/cirugía , Anciano , Ageusia/etiología , Temblor Esencial/fisiopatología , Humanos , Complicaciones Intraoperatorias/etiología , Masculino , Resultado del Tratamiento , Núcleos Talámicos Ventrales/anatomía & histología , Núcleos Talámicos Ventrales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA