Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Oncogene ; 43(32): 2475-2489, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961202

RESUMEN

The preferential response to PARP inhibitors (PARPis) in BRCA-deficient and Schlafen 11 (SLFN11)-expressing ovarian cancers has been documented, yet the underlying molecular mechanisms remain unclear. As the accumulation of single-strand DNA (ssDNA) gaps behind replication forks is key for the lethality effect of PARPis, we investigated the combined effects of SLFN11 expression and BRCA deficiency on PARPi sensitivity and ssDNA gap formation in human cancer cells. PARPis increased chromatin-bound RPA2 and ssDNA gaps in SLFN11-expressing cells and even more in cells with BRCA1 or BRCA2 deficiency. SLFN11 was co-localized with chromatin-bound RPA2 under PARPis treatment, with enhanced recruitment in BRCA2-deficient cells. Notably, the chromatin-bound SLFN11 under PARPis did not block replication, contrary to its function under replication stress. SLFN11 recruitment was attenuated by the inactivation of MRE11. Hence, under PARPi treatment, MRE11 expression and BRCA deficiency lead to ssDNA gaps behind replication forks, where SLFN11 binds and increases their accumulation. As ovarian cancer patients who responded (progression-free survival >2 years) to olaparib maintenance therapy had a significantly higher SLFN11-positivity than short-responders (<6 months), our findings provide a mechanistic understanding of the favorable responses to PARPis in SLFN11-expressing and BRCA-deficient tumors. It highlight the clinical implications of SLFN11.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Replicación del ADN , ADN de Cadena Simple , Proteína Homóloga de MRE11 , Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Cromatina/metabolismo , Ftalazinas/farmacología
2.
J Bone Miner Res ; 39(3): 341-356, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477771

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovitis, bone and cartilage destruction, and increased fracture risk with bone loss. Although disease-modifying antirheumatic drugs have dramatically improved clinical outcomes, these therapies are not universally effective in all patients because of the heterogeneity of RA pathogenesis. Therefore, it is necessary to elucidate the molecular mechanisms underlying RA pathogenesis, including associated bone loss, in order to identify novel therapeutic targets. In this study, we found that Budding uninhibited by benzimidazoles 1 (BUB1) was highly expressed in RA patients' synovium and murine ankle tissue with arthritis. As CD45+CD11b+ myeloid cells are a Bub1 highly expressing population among synovial cells in mice, myeloid cell-specific Bub1 conditional knockout (Bub1ΔLysM) mice were generated. Bub1ΔLysM mice exhibited reduced femoral bone mineral density when compared with control (Ctrl) mice under K/BxN serum-transfer arthritis, with no significant differences in joint inflammation or bone erosion based on a semi-quantitative erosion score and histological analysis. Bone histomorphometry revealed that femoral bone mass of Bub1ΔLysM under arthritis was reduced by increased osteoclastic bone resorption. RNA-seq and subsequent Gene Set Enrichment Analysis demonstrated a significantly enriched nuclear factor-kappa B pathway among upregulated genes in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated bone marrow-derived macrophages (BMMs) obtained from Bub1ΔLysM mice. Indeed, osteoclastogenesis using BMMs derived from Bub1ΔLysM was enhanced by RANKL and tumor necrosis factor-α or RANKL and IL-1ß treatment compared with Ctrl. Finally, osteoclastogenesis was increased by Bub1 inhibitor BAY1816032 treatment in BMMs derived from wildtype mice. These data suggest that Bub1 expressed in macrophages plays a protective role against inflammatory arthritis-associated bone loss through inhibition of inflammation-mediated osteoclastogenesis.


Rheumatoid arthritis (RA) is a disease caused by an abnormal immune system, resulting in inflammation, swelling, and bone destruction in the joints, along with systemic bone loss. While new medications have dramatically improved treatment efficacy, these therapies are not universally effective for all patients. Therefore, we need to understand the regulatory mechanisms behind RA, including associated bone loss, to develop better therapies. In this study, we found that Budding uninhibited by benzimidazoles 1 (Bub1) was highly expressed in inflamed joints, especially in myeloid cells, which are a type of immune cells. To explore its role, we created myeloid cell­specific Bub1 conditional knockout (cKO) mice and induced arthritis to analyze its role during arthritis. The cKO mice exhibited lower bone mineral density when compared with control mice under inflammatory arthritis because of increased osteoclastic bone resorption, without significant differences in joint inflammation or bone erosion. Further investigation showed that Bub1 prevents excessive osteoclast differentiation induced by inflammation in bone marrow macrophages. These data suggest that Bub1 in macrophages protects against bone loss caused by inflammatory arthritis, offering potential insights for developing treatments that focus on bone health.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Óseas Metabólicas , Resorción Ósea , Animales , Humanos , Ratones , Artritis Experimental/patología , Artritis Reumatoide/patología , Enfermedades Óseas Metabólicas/patología , Resorción Ósea/genética , Inflamación/patología , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(6): 927-942, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078291

RESUMEN

BACKGROUND: Endothelial cell activation is tightly controlled by the balance between VEGF (vascular endothelial cell growth factor) and Notch signaling pathway. VEGF destabilizes blood vessels and promotes neovascularization, which are common features of sight-threatening ocular vascular disorders. Here, we show that BCL6B (B-cell CLL/lymphoma 6 member B protein), also known as BAZF, ZBTB28, and ZNF62, plays a pivotal role in the development of retinal edema and neovascularization. METHODS: The pathophysiological physiological role of BCL6B was investigated in cellular and animal models mimicking 2 pathological conditions: retinal vein occlusion and choroidal neovascularization. An in vitro experimental system was used in which human retinal microvascular endothelial cells were supplemented with VEGF. Choroidal neovascularization cynomolgus monkey model was generated to investigate the involvement of BCL6B in the pathogenesis. Mice lacking BCL6B or treated with BCL6B-targeting small-interfering ribose nucleic acid were examined for histological and molecular phenotypes. RESULTS: In retinal endothelial cells, the BCL6B expression level was increased by VEGF. BCL6B-deficient endothelial cells showed Notch signal activation and attenuated cord formation via blockage of the VEGF-VEGFR2 signaling pathway. Optical coherence tomography images showed that choroidal neovascularization lesions were decreased by BCL6B-targeting small-interfering ribose nucleic acid. Although BCL6B mRNA expression was significantly increased in the retina, BCL6B-targeting small-interfering ribose nucleic acid suppressed ocular edema in the neuroretina. The increase in proangiogenic cytokines and breakdown of the inner blood-retinal barrier were abrogated in BCL6B knockout (KO) mice via Notch transcriptional activation by CBF1 (C promotor-binding factor 1) and its activator, the NICD (notch intracellular domain). Immunostaining showed that Müller cell activation, a source of VEGF, was diminished in BCL6B-KO retinas. CONCLUSIONS: These data indicate that BCL6B may be a novel therapeutic target for ocular vascular diseases characterized by ocular neovascularization and edema.


Asunto(s)
Neovascularización Coroidal , Ácidos Nucleicos , Neovascularización Retiniana , Enfermedades Vasculares , Animales , Humanos , Ratones , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Células Endoteliales/metabolismo , Macaca fascicularis/metabolismo , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapéutico , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Ribosa/metabolismo , Ribosa/uso terapéutico , Enfermedades Vasculares/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Front Oncol ; 13: 1082441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969081

RESUMEN

Introduction: The incidence of endometrial cancer (EC) has been increasing worldwide. However, because there are limited chemotherapeutic options for the treatment of EC, the prognosis of advanced-stage EC is poor. Methods: Gene expression profile datasets for EC cases registered in The Cancer Genome Atlas (TCGA) was reanalyzed. Highly expressed genes in advanced-stage EC (110 cases) compared with early-stage EC (255 cases) were extracted and Gene Ontology (GO) enrichment analysis was performed. Among the enriched genes, Kaplan-Meier (KM) plotter analysis was performed. Candidate genes expression was analyzed in HEC50B cells and Ishikawa cells by RT-qPCR. In HEC50B cells, LIM homeobox1 (LIM1) was knocked down (KD) and cell proliferation, migration, and invasion ability of the cells were evaluated. Xenografts were generated using LIM1-KD cells and tumor growth was evaluated. Ingenuity Pathway Analysis (IPA) of RNA-seq data using LIM-KD cells was performed. Expression of phospho-CREB and CREB-related proteins were evaluated in LIM1-KD cells by western blotting and in xenograft tissue by immunofluorescent staining. Two different CREB inhibitors were treated in HEC50B and cell proliferation was evaluated by MTT assay. Results: Reanalysis of TCGA followed by GO enrichment analysis revealed that homeobox genes were highly expressed in advanced-stage EC. Among the identified genes, KM plotter analysis showed that high LIM1 expression was associated with a significantly poorer prognosis in EC. Additionally, LIM1 expression was significantly higher in high-grade EC cell lines, HEC50B cells than Ishikawa cells. Knockdown of LIM1 showed reduced cell proliferation, migration and invasion in HEC50B cells. Xenograft experiments revealed that tumor growth was significantly suppressed in LIM1-KD cells. IPA of RNA-seq data using LIM-KD cells predicted that the mRNA expression of CREB signaling-related genes was suppressed. Indeed, phosphorylation of CREB was decreased in LIM1-KD cells and LIM1-KD cells derived tumors. HEC50B cells treated by CREB inhibitors showed suppression of cell proliferation. Conclusion and discussion: Collectively, these results suggested that high LIM1 expression contributed to tumor growth via CREB signaling in EC. Inhibition of LIM1 or its downstream molecules would be new therapeutic strategies for EC.

5.
Biochem Biophys Res Commun ; 611: 146-150, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35489200

RESUMEN

Netrin-1, the protein product of the NTN1 gene, is an axon guidance molecule implicated in regulation of cell survival and tumorigenesis. Expression of the netrin-1 receptors deleted in colorectal cancer (DCC) and uncoordinated 5 homolog (UNC5H) is frequently silenced in colorectal cancer (CRC) by either loss of heterozygosity or epigenetic mechanisms. However, netrin-1 expression and regulation in CRC are mostly unknown. Here, we report that NTN1 expression is significantly reduced in most CRC tissues compared to the adjacent normal intestinal mucosa, and that NTN1 DNA methylation is significantly higher in CRCs (24.6%) than in the adjacent normal intestinal mucosa (4.0%). In 6 CRC cell lines, NTN1 expression is low. Treatment with 5-Aza-2'-deoxycytidine increased expression of NTN1 in CRC cell lines, indicating that DNA methylation represses NTN1 transcription in CRCs. NTN1 DNA hypermethylation was significantly associated with advanced CRC disease. Median netrin-1 serum levels were significantly decreased in CRC patients (330.1 pg/mL) compared with normal individuals (438.6 pg/mL). Our results suggest that netrin-1 is a candidate biomarker for CRC.


Asunto(s)
Neoplasias Colorrectales , Epigénesis Genética , Netrina-1 , Orientación del Axón , Neoplasias Colorrectales/genética , Humanos , Receptores de Netrina/genética , Netrina-1/genética
6.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638873

RESUMEN

The characterization of aortic valve interstitial cells (VICs) cultured under optimal conditions is essential for understanding the molecular mechanisms underlying aortic valve stenosis. Here, we propose 2% hypoxia as an optimum VIC culture condition. Leaflets harvested from patients with aortic valve regurgitation were digested using collagenase and VICs were cultured under the 2% hypoxic condition. A significant increase in VIC growth was observed in 2% hypoxia (hypo-VICs), compared to normoxia (normo-VICs). RNA-sequencing revealed that downregulation of oxidative stress-marker genes (such as superoxide dismutase) and upregulation of cell cycle accelerators (such as cyclins) occurred in hypo-VICs. Accumulation of reactive oxygen species was observed in normo-VICs, indicating that low oxygen tension can avoid oxidative stress with cell-cycle arrest. Further mRNA quantifications revealed significant upregulation of several mesenchymal and hematopoietic progenitor markers, including CD34, in hypo-VICs. The stemness of hypo-VICs was confirmed using osteoblast differentiation assays, indicating that hypoxic culture is beneficial for maintaining growth and stemness, as well as for avoiding senescence via oxidative stress. The availability of hypoxic culture was also demonstrated in the molecular screening using proteomics. Therefore, hypoxic culture can be helpful for the identification of therapeutic targets and the evaluation of VIC molecular functions in vitro.


Asunto(s)
Antígenos CD34/biosíntesis , Insuficiencia de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica , Células Madre/metabolismo , Válvula Aórtica/patología , Insuficiencia de la Válvula Aórtica/patología , Hipoxia de la Célula , Femenino , Humanos , Masculino , ARN Mensajero/biosíntesis , Células Madre/patología
7.
Ann Thorac Surg ; 110(1): 40-49, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31760051

RESUMEN

BACKGROUND: The molecular mechanisms underlying aortic valve calcification are poorly understood. Here, we aimed to identify the master regulators of calcification by comparison of genes in valve interstitial cells (VICs) with calcified and noncalcified aortic valves. METHODS: Calcified aortic valves were surgically excised from patients with aortic valve stenosis who required aortic valve replacements. Noncalcified and calcified sections were obtained from aortic valve leaflets. Collagenase-digested tissues were seeded into dishes, and VICs adhering to the dishes were cultured for 3 weeks, followed by comprehensive gene expression analysis. Functional analyses of identified proteins were performed by in vitro calcification assays. Tissue localization was determined by immunohistochemical staining for normal (n = 11) and stenotic valves (n = 30). RESULTS: We found 87 genes showing greater than a twofold change in calcified tissues. Among these genes, 68 were downregulated and 19 were upregulated. Cyclooxygenase-1 (COX1) messenger RNA and protein levels were upregulated in VICs from calcified tissues. The COX1 messenger RNA and protein levels in VICs were also strongly increased by stimulation with osteoblast differentiation medium. These were VIC-specific phenotypes and were not observed in other cell types. Immunohistochemical staining revealed that COX1-positive VICs were specifically localized in the calcified area of aortic valve tissues. CONCLUSIONS: The VIC-specific COX1 overexpression played a crucial role in calcification by promoting osteoblast differentiation in aortic valve tissues.


Asunto(s)
Estenosis de la Válvula Aórtica/enzimología , Válvula Aórtica/enzimología , Válvula Aórtica/patología , Calcinosis/enzimología , Ciclooxigenasa 1/fisiología , Fibroblastos/enzimología , Anciano , Anciano de 80 o más Años , Válvula Aórtica/citología , Válvula Aórtica/metabolismo , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Calcinosis/cirugía , Calcio/metabolismo , Células Cultivadas , Medios de Cultivo/farmacología , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/genética , Femenino , Perfilación de la Expresión Génica , Implantación de Prótesis de Válvulas Cardíacas , Humanos , Masculino , Persona de Mediana Edad , Osteoblastos/patología , Osteogénesis , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/genética , Vimentina/análisis
8.
J Cardiothorac Surg ; 14(1): 124, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253183

RESUMEN

BACKGROUND: Postoperative pericardial adhesions are considered a risk factor for redo cardiac surgery. Several large- and medium-size animal models of pericardial adhesions have been reported, but small animal models for investigating the development of anti-adhesion materials and molecular mechanisms of this condition are lacking. In this study, we aimed to establish a simple mouse model of pericardial adhesions to address this gap. METHODS: We administered blood, minocycline, picibanil, and talc into the murine pericardial cavity via one-shot injection. Micro-computed tomography analyses of contrast agent-injected mice were carried out for methodological evaluation. We investigated various dosages and treatment durations for molecules identified to be inducers of pericardial adhesion. The adhesive grade was quantified by scoring the strength and volume of adhesion tissues at sacrificed time points. Histological staining with hematoxylin and eosin and Masson's trichrome, and immunostaining for F4/80 or αSMA was performed to investigate the structural features of pericardial adhesions, and pathological features of the pericardial adhesion tissue were compared with human clinical specimens. RESULTS: Administration of talc resulted in the most extensive pericardial adhesions. Micro-computed tomography imaging data confirmed that accurate injection into the pericardial cavity was achieved. We found the optimal condition for the formation of strong pericardial adhesions to be injection of 2.5 mg/g talc for 2 weeks. Furthermore, histological analysis showed that talc administration led to an invasion of myofibroblasts and macrophages in the pericardial cavity and epicardium, consistent with pathological findings in patients with left ventricular assistive devices. CONCLUSIONS: We successfully established a simple mouse model of talc-induced pericardial adhesions, which mimics human pathology and could contribute to solving the clinical issues related to pericardial adhesions.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Pericardio/patología , Complicaciones Posoperatorias/diagnóstico , Adherencias Tisulares/diagnóstico , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Complicaciones Posoperatorias/etiología , Adherencias Tisulares/etiología , Microtomografía por Rayos X
9.
Oncogene ; 37(40): 5416-5434, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29867202

RESUMEN

Tumor metastasis is the most common cause of cancer death. Elucidation of the mechanism of tumor metastasis is therefore important in the development of novel, effective anti-cancer therapies to reduce cancer mortality. Interaction between cancer cells and surrounding stromal cells in the tumor microenvironment is a key factor in tumor metastasis. Using a co-culture assay system with human prostate cancer LNCaP cells and primary human prostate stromal cells, we identified epithelial membrane protein 1 (EMP1) as a gene with elevated expression in the cancer cells. The orthotopic injection of LNCaP cells overexpressing EMP1 (EMP1-LNCaP cells) into the prostate of nude mice induced lymph node and lung metastases, while that of control LNCaP cells did not. EMP1-LNCaP cells had higher cell motility and Rac1 activity than control LNCaP cells. These results were also observed in other lines of cancer cells. We newly identified copine-III as an intracellular binding partner of EMP1. Knockdown of copine-III attenuated the increased cell motility and Rac1 activity in EMP1-LNCaP cells. Reduced cell motility and Rac1 activity following knockdown of copine-III in EMP1-LNCaP cells were recovered by re-expression of wild-type copine-III, but not of a copine-III mutant incapable of interacting with EMP1, suggesting the importance of the EMP1-copine-III interaction. Phosphorylated and activated Src and a Rac guanine nucleotide exchange factor Vav2 were found to be involved in the EMP1-induced enhancement of cell motility and Rac1 activation. Moreover, EMP1 was highly expressed in prostate cancer samples obtained from patients with higher Gleason score. These results demonstrate that upregulation of EMP1 significantly increases cancer cell migration that leads to tumor metastasis, suggesting that EMP1 may play an essential role as a positive regulator of tumor metastasis.


Asunto(s)
Movimiento Celular , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transducción de Señal , Células del Estroma/patología , Regulación hacia Arriba
10.
Biochem Biophys Res Commun ; 499(1): 17-23, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29550478

RESUMEN

A disintegrin and metalloproteinase (ADAM) family are crucial enzymes for ectodomain shedding of multiple substrates and are involved in diverse biologic and pathologic processes. However, the molecular mechanism underlying substrate selectivity of ADAMs is poorly understood. In this study, we observed that disruption of actin polymerization by pharmacological inhibitors, latrunculin A (LatA) and cytochalasin D (CyD), induced ectodomain shedding of epidermal growth factor (EGF) family ligands. Induced shedding activity by LatA or CyD was suppressed by a metalloprotease inhibitor KB-R7785, indicating that ADAMs-mediated shedding is tightly controlled by actin cytoskeleton. We also investigated roles of cullin family, a component of cullin-RING based E3 ubiquitin ligases, in ectodomain shedding, since cullin family is implicated in the regulation of cytoskeletal dynamics. Knockdown of cullin 3 (Cul3) by a specific siRNA inhibited ectodomain shedding of amphiregulin (AREG), a member of EGF family, and responses were associated with activation of RhoA GTPase and induction of stress fiber formation. On the other hand, the RhoA inhibitor C3 transferase rescued AREG shedding reduced by Cul3 knockdown. These results describe a novel molecular mechanism of Cul3 to regulate AREG shedding by modulating cytoskeletal dynamics in a RhoA dependent manner.


Asunto(s)
Proteína ADAM17/genética , Citoesqueleto de Actina/metabolismo , Anfirregulina/genética , Proteínas Cullin/genética , Fibroblastos/metabolismo , Proteína ADAM17/antagonistas & inhibidores , Proteína ADAM17/metabolismo , ADP Ribosa Transferasas/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/ultraestructura , Anfirregulina/metabolismo , Animales , Toxinas Botulínicas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/antagonistas & inhibidores , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Proteínas Cullin/antagonistas & inhibidores , Proteínas Cullin/metabolismo , Citocalasina D/antagonistas & inhibidores , Citocalasina D/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Tiazolidinas/antagonistas & inhibidores , Tiazolidinas/farmacología , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 38(1): 174-185, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191924

RESUMEN

OBJECTIVE: The incidence of blindness is increasing because of the increase in abnormal ocular neovascularization. Anti-VEGF (vascular endothelial growth factor) therapies have led to good results, although they are not a cure for the blindness. The purpose of this study was to determine what role HB-EGF (heparin-binding epidermal growth factor-like growth factor) plays in ocular angiogenesis. APPROACH AND RESULTS: We examined the role played by HB-EGF in ocular neovascularization in 2 animal models of neovascularization: laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy. We also studied human retinal microvascular endothelial cells in culture. Our results showed that the neovascularization was decreased in both the CNV and oxygen-induced retinopathy models in HB-EGF conditional knockout mice compared with that in wild-type mice. Moreover, the expressions of HB-EGF and VEGF were increased after laser-induced CNV and oxygen-induced retinopathy, and their expression sites were located around the neovascular areas. Exposure of human retinal microvascular endothelial cells to HB-EGF and VEGF increased their proliferation and migration, and CRM-197 (cross-reactive material-197), an HB-EGF inhibitor, decreased the HB-EGF-induced and VEGF-induced cell proliferation and migration. VEGF increased the expression of HB-EGF mRNA. VEGF-dependent activation of EGFR (epidermal growth factor receptor)/ERK1/2 (extracellular signal-regulated kinase 1/2) signaling and cell proliferation of endothelial cells required stimulation of the ADAM17 (a disintegrin and metalloprotease) and ADAM12. CRM-197 decreased the grades of the fluorescein angiograms and size of the CNV areas in marmoset monkeys. CONCLUSIONS: These findings suggest that HB-EGF plays an important role in the development of CNV. Therefore, further investigations of HB-EGF are needed as a potential therapeutic target in the treatment of exudative age-related macular degeneration.


Asunto(s)
Comunicación Autocrina , Neovascularización Coroidal/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Neovascularización Patológica , Comunicación Paracrina , Neovascularización Retiniana/metabolismo , Vasos Retinianos/metabolismo , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Comunicación Autocrina/efectos de los fármacos , Proteínas Bacterianas/farmacología , Callithrix , Movimiento Celular , Proliferación Celular , Células Cultivadas , Neovascularización Coroidal/genética , Neovascularización Coroidal/patología , Neovascularización Coroidal/prevención & control , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/deficiencia , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , Ratones Noqueados , Comunicación Paracrina/efectos de los fármacos , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Neovascularización Retiniana/prevención & control , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
J Biochem ; 162(4): 237-245, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981750

RESUMEN

Tissue remodelling and regeneration in various pathophysiological conditions (e.g. the processes of development, pregnancy, inflammation, wound healing, tissue regeneration, tumor growth, etc.) require angiogenesis, a dynamically coordinated response to stimuli from the extracellular microenvironment. During angiogenic and angiostatic responses, endothelial cells play a central role in the blood vessel formation and regression. Angiostatic responses, which are evoked by crucial factors such as VEGF and DLL4, have been elucidated. However, it has not been revealed, how endothelial cells process these conflicting signals. The study of VEGFR-Notch cross-signalling provided some clues. We discuss here the potential roles of cullin 3-based ubiquitin E3 ligases as key players in the process of various signals in endothelial cell function and angiogenesis. Our recent findings show that they function as units to process conflicting signalling crosstalk, epigenetic regulation of key factors, and functional barrier maintenance. We also expect more divergent roles of cullin 3-based ubiquitin E3 ligases in endothelial cell function and angiogenesis, and for their potential use as therapeutic targets.


Asunto(s)
Proteínas Cullin/metabolismo , Células Endoteliales/metabolismo , Neovascularización Patológica/metabolismo , Células Endoteliales/patología , Humanos , Neovascularización Patológica/patología
13.
Hypertension ; 70(4): 780-789, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28760942

RESUMEN

Perivascular adipose tissue exhibits characteristics of active local inflammation, which contributes to the development of atherosclerotic disease as a complication of obesity/metabolic syndrome. However, the precise role of perivascular adipose tissue in the progression of abdominal aortic aneurysm remains unclear. To test the hypothesis that genetic deletion of angiotensin II type 1a (AT1a) receptor in perivascular visceral adipose tissue (VAT) can attenuate aortic aneurysm formation in apolipoprotein E-deficient (ApoE-/-) mice, we performed adipose tissue transplantation experiments by using an angiotensin II-induced aneurysm murine model, in which we transplanted VAT from ApoE-/- or ApoE-/- AT1a-/- donor mice onto the abdominal aorta of ApoE-/- recipient mice. Compared with ApoE-/- VAT transplantation, ApoE-/- AT1a-/- VAT transplantation markedly attenuated aortic aneurysm formation, macrophage infiltration, and gelatinolytic activity in the abdominal aorta. AT1a receptor activation led to the polarization of macrophages in perivascular VAT toward the proinflammatory phenotype. Moreover, osteopontin expression and gelatinolytic activity were considerably lower in ApoE-/- AT1a-/- perivascular VAT than in ApoE-/- perivascular VAT, and angiotensin II-induced osteopontin secretion from adipocytes was eliminated after deletion of AT1a receptor in adipocytes. Notably, induction of macrophage migration by conditioned medium from angiotensin II-stimulated wild-type adipocytes was suppressed by treatment with an osteopontin-neutralizing antibody, and ApoE-/- OPN-/- VAT transplantation more potently attenuated aortic aneurysm formation than ApoE-/- VAT transplantation. Our findings indicate a previously unrecognized effect of AT1a receptor in perivascular VAT on the pathogenesis of abdominal aortic aneurysm.


Asunto(s)
Aorta Abdominal , Aneurisma de la Aorta Abdominal , Aterosclerosis/metabolismo , Inflamación/metabolismo , Grasa Intraabdominal , Receptor de Angiotensina Tipo 1 , Animales , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Apolipoproteínas E/metabolismo , Movimiento Celular/fisiología , Modelos Animales de Enfermedad , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Macrófagos/fisiología , Ratones , Osteopontina/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo
14.
Surgery ; 161(6): 1525-1535, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28143660

RESUMEN

BACKGROUND: Lung injury is a life-threatening complication in patients with liver dysfunction. We recently provided an experimental lung injury model in mouse with common bile duct ligation. In this study, we aimed to characterize the pathologic and biochemical features of lung tissues in common bile duct ligation mice using a proteomic approach. METHODS: Common bile ducts of BALB/c mice, 8 weeks of age, were ligated operatively. CD31-expressing pulmonary cells were sorted with immunomagnetic microbeads, and protein profiles were examined by 2-dimensional gel electrophoresis. Based on the results of protein identification, immunohistochemistry and quantitative reverse transcription polymerase chain reaction were carried out in pulmonary and hepatic tissues. RESULTS: Two-dimensional gel electrophoresis revealed 3 major inflammation-associated proteins exhibiting considerable increases in the number of CD31-positive pulmonary cells after common bile duct ligation. Mass spectrometry analysis identified these proteins as SerpinB1a (48 kDa), ANXA1 (46 kDa), and S100A9 (16 kDa). Furthermore, the 3 proteins were more highly expressed in dilated pulmonary blood vessels of common bile duct ligation mice, in which neutrophils and monocytes were prominent, as shown by immunohistochemistry. More importantly, SerpinB1a mRNA and protein were significantly upregulated in the liver, whereas S100A9 and ANXA1 mRNA and protein were upregulated in the lungs, as shown by quantitative reverse transcription polymerase chain reaction and Western blotting. CONCLUSION: We identified 3 proteins that were highly expressed in the lung after common bile duct ligation using a proteomics-based approach.


Asunto(s)
Lesión Pulmonar Aguda/patología , Anexina A1/análisis , Calgranulina B/análisis , Conducto Colédoco/cirugía , Ligadura/efectos adversos , Serpinas/análisis , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Electroforesis en Gel Bidimensional , Síndrome Hepatopulmonar/metabolismo , Síndrome Hepatopulmonar/patología , Inmunohistoquímica , Ligadura/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteómica , Distribución Aleatoria , Sensibilidad y Especificidad
15.
Cancer Sci ; 108(2): 208-215, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27987332

RESUMEN

Vascular endothelial (VE)-cadherin, a major endothelial adhesion molecule, regulates vascular permeability, and increased vascular permeability has been observed in several cancers. The aim of this study was to elucidate the role of the NEDD8-Cullin E3 ligase, in maintaining barrier permeability. To this end, we investigated the effects of the inhibition of Cullin E3 ligases, by using inhibitors and knockdown techniques in HUVECs. Furthermore, we analyzed the mRNA and protein levels of the ligases by quantitative RT-PCR and Western blotting, respectively. The results revealed that NEDD8-conjugated Cullin 3 is required for VE-cadherin-mediated endothelial barrier functions. Treatment of HUVECs with MLN4924, a chemical inhibitor of the NEDD8-activating enzyme, led to high vascular permeability due to impaired cell-cell contact. Similar results were obtained when HUVECs were treated with siRNA directed against Cullin 3, one of the target substrates of NEDD8. Immunocytochemical staining showed that both treatments equally depleted VE-cadherin protein localized at the cell-cell borders. However, quantitative RT-PCR showed that there was no significant difference in the VE-cadherin mRNA levels between the treatment and control groups. In addition, cycloheximide chase assay revealed that the half-life of VE-cadherin protein was dramatically reduced by Cullin 3 depletion. Together, these findings suggest that neddylated Cullin 3 plays a crucial role in endothelial cell barrier function by regulating VE-cadherin.


Asunto(s)
Antígenos CD/fisiología , Cadherinas/fisiología , Permeabilidad Capilar/fisiología , Proteínas Cullin/fisiología , Endotelio Vascular/fisiología , Ubiquitinas/fisiología , Antígenos CD/efectos de los fármacos , Antígenos CD/genética , Cadherinas/efectos de los fármacos , Cadherinas/genética , Permeabilidad Capilar/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Proteínas Cullin/análisis , Proteínas Cullin/antagonistas & inhibidores , Cicloheximida/farmacología , Ciclopentanos/farmacología , Endotelio Vascular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína NEDD8 , Inhibidores de la Síntesis de la Proteína , Pirimidinas/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Ubiquitinas/análisis
16.
J Biol Chem ; 291(20): 10490-500, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26966180

RESUMEN

Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a type I transmembrane glycoprotein, is known as one of the most specific lymphatic vessel markers in the skin. In this study, we found that the ectodomain of LYVE-1 undergoes proteolytic cleavage, and this process produces soluble LYVE-1. We further identified the cleavage site for ectodomain shedding and generated an uncleavable mutant of LYVE-1. In lymphatic endothelial cells, ectodomain shedding of LYVE-1 was induced by vascular endothelial growth factor (VEGF)-A, an important factor for angiogenesis and lymphangiogenesis under pathological conditions. VEGF-A-induced LYVE-1 ectodomain shedding was mediated via the extracellular signal-regulated kinase (ERK) and a disintegrin and metalloproteinase (ADAM) 17. Wild-type LYVE-1, but not uncleavable LYVE-1, promoted migration of lymphatic endothelial cells in response to VEGF-A. Immunostaining analyses in human psoriasis skin lesions and VEGF-A transgenic mouse skin suggested that the ectodomain shedding of LYVE-1 occurred in lymphatic vessels undergoing chronic inflammation. These results indicate that the ectodomain shedding of LYVE-1 might be involved in promoting pathological lymphangiogenesis.


Asunto(s)
Glicoproteínas/metabolismo , Vasos Linfáticos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Animales , Línea Celular , Micropartículas Derivadas de Células/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Glicoproteínas/genética , Humanos , Linfangiogénesis/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas de Transporte de Membrana , Ratones , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Psoriasis/etiología , Psoriasis/metabolismo , Psoriasis/patología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas de Transporte Vesicular/genética
17.
PLoS One ; 9(4): e94550, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24733017

RESUMEN

BACKGROUND: Liver dysfunction and cirrhosis affect vasculature in several organ systems and cause impairment of organ functions, thereby increasing morbidity and mortality. Establishment of a mouse model of hepatopulmonary syndrome (HPS) would provide greater insights into the genetic basis of the disease. Our objectives were to establish a mouse model of lung injury after common bile duct ligation (CBDL) and to investigate pulmonary pathogenesis for application in future therapeutic approaches. METHODS: Eight-week-old Balb/c mice were subjected to CBDL. Immunohistochemical analyses and real-time quantitative reverse transcriptional polymerase chain reaction were performed on pulmonary tissues. The presence of HPS markers was detected by western blot and microarray analyses. RESULTS: We observed extensive proliferation of CD31-positive pulmonary vascular endothelial cells at 2 weeks after CBDL and identified 10 upregulated and 9 down-regulated proteins that were associated with angiogenesis. TNF-α and MMP-9 were highly expressed at 3 weeks after CBDL and were less expressed in the lungs of the control group. CONCLUSIONS: We constructed a mouse lung injury model by using CBDL. Contrary to our expectation, lung pathology in our mouse model exhibited differences from that of rat models, and the mechanisms responsible for these differences are unknown. This phenomenon may be explained by contrasting processes related to TNF induction of angiogenic signaling pathways in the inflammatory phase. Thus, we suggest that our mouse model can be applied to pulmonary pathological analyses in the inflammatory phase, i.e., to systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome.


Asunto(s)
Conducto Colédoco/cirugía , Modelos Animales de Enfermedad , Lesión Pulmonar/etiología , Animales , Síndrome Hepatopulmonar/fisiopatología , Humanos , Inmunohistoquímica , Inflamación , Ligadura , Hepatopatías/patología , Pulmón/patología , Pulmón/fisiopatología , Ratones , Ratones Endogámicos BALB C , Neovascularización Patológica , Neutrófilos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
18.
J Biochem ; 154(1): 67-76, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23598347

RESUMEN

Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is a member of the EGF family, each of which is produced as a type I transmembrane precursor. The juxtamembrane domain of proHB-EGF, a precursor of HB-EGF, is cleaved by a disintegrin and metalloproteases. HB-EGF is released into the extracellular space and strongly activates EGF receptor. The relevance of better understanding proHB-EGF shedding relates to the importance of the process in the proliferation, differentiation and survival of various types of cells. Shedding of proHB-EGF is normally evaluated using an alkaline phosphatase-tagged proHB-EGF assay or a western blotting assay that involves multiple cells, which makes it difficult to observe spatiotemporal differences in the activities of the individual cells. In this study, we developed a fluorescent proHB-EGF-based metalloprotease biosensor, named Fluhemb, to visualize spatiotemporal regulation of proHB-EGF shedding in individual cells using a simple method that measures changes in fluorescence ratios. Fluhemb might be very useful for detecting the activity of proHB-EGF shedding in various types of cells under different conditions in vitro and in vivo.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Técnicas Biosensibles/métodos , Línea Celular , Membrana Celular/metabolismo , Enzimas Inmovilizadas , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Heparina/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Metaloproteasas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Confocal , Invasividad Neoplásica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína , Trasplantes
19.
Angiogenesis ; 16(3): 675-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23515950

RESUMEN

Vascular endothelial growth factor (VEGF) is a major angiogenic factor that activates pro-angiogenic molecules to generate new vessels. Recently, we identified a VEGF-A-induced pro-angiogenic gene, BCL-6 associated zinc finger protein (BAZF), in endothelial cells. BAZF interacts with CBF1, a transcriptional regulator of Notch signaling, and downregulates Notch signaling by inducing the degradation of CBF1. A signal inhibition assay with a combination of chemical inhibitors and siRNA revealed that the protein kinase D (PRKD) family, mainly PRKD2, mediated BAZF gene expression by VEGF-A stimulation. A luciferase reporter assay showed that the promoter activity of the BAZF gene was unchanged by VEGF-A stimulation. However, we found that the stability of BAZF mRNA increased in a VEGF-A/PRKD2-dependent manner. In further studies to investigate the underlying mechanism, we successfully identified heat shock protein 90 beta (HSP90ß) as a molecule that interacts with and stabilizes BAZF mRNA following VEGF-A/PRKD2 activation. These data suggest that HSP90ß may positively regulate angiogenesis, not only as a protein chaperone, but also as an mRNA stabilizer for pro-angiogenic genes, such as BAZF, in a PRKD2 activity-dependent manner.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Quinasas/metabolismo , Estabilidad del ARN/fisiología , Proteínas Represoras/fisiología , Western Blotting , Electroforesis en Gel Bidimensional , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Luciferasas , Proteína Quinasa C/metabolismo , Proteína Quinasa D2 , Interferencia de ARN , Estabilidad del ARN/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología
20.
Blood ; 119(11): 2688-98, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22279058

RESUMEN

Angiogenic homeostasis is maintained by a balance between vascular endothelial growth factor (VEGF) and Notch signaling in endothelial cells (ECs). We screened for molecules that might mediate the coupling of VEGF signal transduction with down-regulation of Notch signaling, and identified B-cell chronic lymphocytic leukemia/lymphoma6-associated zinc finger protein (BAZF). BAZF was induced by VEGF-A in ECs to bind to the Notch signaling factor C-promoter binding factor 1 (CBF1), and to promote the degradation of CBF1 through polyubiquitination in a CBF1-cullin3 (CUL3) E3 ligase complex. BAZF disruption in vivo decreased endothelial tip cell number and filopodia protrusion, and markedly abrogated vascular plexus formation in the mouse retina, overlapping the retinal phenotype seen in response to Notch activation. Further, impaired angiogenesis and capillary remodeling were observed in skin-wounded BAZF(-/-) mice. We therefore propose that BAZF supports angiogenic sprouting via BAZF-CUL3-based polyubiquitination-dependent degradation of CBF1 to down-regulate Notch signaling.


Asunto(s)
Proteínas Cullin/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Comunicación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas Cullin/antagonistas & inhibidores , Proteínas Cullin/genética , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/antagonistas & inhibidores , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Inmunoprecipitación , Luciferasas/metabolismo , Ratones , Ratones Noqueados , Morfogénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Poliubiquitina/metabolismo , Seudópodos/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Retina/citología , Retina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Piel/lesiones , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA