Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biosci Bioeng ; 138(5): 375-381, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39122620

RESUMEN

Protein-based therapeutics, including antibodies and antibody-like-proteins, have increasingly attracted attention due to their high specificity compared to small-molecular drugs. The Gγ recruitment system, one of the in vivo yeast two-hybrid systems for detecting protein-protein interactions, has been previously developed using yeast signal transduction machinery. In this study, we modified the Gγ recruitment system to screen the protein mutants that efficiently bind to the intracellular domain of the epidermal growth factor receptor L858R mutant (cytoEGFRL858R). Using the modified platform, we performed in vivo directed evolution for growth factor receptor-bound protein 2 (Grb2) and its truncated variant containing only the Src-homology 2 (SH2) domain, successfully identifying several mutants that more strongly bound to cytoEGFRL858R than their parental proteins. Some of them contained novel beneficial mutations (F108Y and Q144H) and specifically bound to the recombinant cytosolic phosphorylated EGFR in vitro, highlighting the utility of the evolutionary platform.


Asunto(s)
Evolución Molecular Dirigida , Receptores ErbB , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mutación , Técnicas del Sistema de Dos Híbridos , Dominios Homologos src , Fosforilación , Dominios Proteicos
2.
J Autoimmun ; 140: 103094, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37716077

RESUMEN

Sensitization to self-peptides induces various immunological responses, from autoimmunity to tumor immunity, depending on the peptide sequence; however, the underlying mechanisms remain unclear, and thus, curative therapeutic options considering immunity balance are limited. Herein, two overlapping dominant peptides of myelin proteolipid protein, PLP136-150 and PLP139-151, which induce different forms of experimental autoimmune encephalomyelitis (EAE), monophasic and relapsing EAE, respectively, were investigated. Mice with monophasic EAE exhibited highly resistant to EAE re-induction with any encephalitogenic peptides, whereas mice with relapsing EAE were susceptible, and progressed, to EAE re-induction. This resistance to relapse and re-induction in monophasic EAE mice was associated with the maintenance of potent CD69+CD103+CD4+CD25high regulatory T-cells (Tregs) enriched with antigen specificity, which expanded preferentially in the central nervous system with sustained suppressive activity. This tissue-preferential sustainability of potent antigen-specific Tregs was correlated with the antigenicity of PLP136-150, depending on its flanking residues. That is, the flanking residues of PLP136-150 enable to form pivotally arranged strong hydrogen bonds that secured its binding stability to MHC-class II. These potent Tregs acting tissue-preferentially were induced only by sensitization of PLP136-150, not by its tolerance induction, independent of EAE development. These findings suggest that, for optimal therapy, "benign autoimmunity" can be critically achieved through inverse vaccination with self-peptides by manipulating their flanking residues.

3.
Genes (Basel) ; 13(3)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327967

RESUMEN

Hepatocyte nuclear factor 1A (HNF1A) is the master regulator of liver homeostasis and organogenesis and regulates many aspects of hepatocyte functions. It acts as a tumor suppressor in the liver, evidenced by the increased proliferation in HNF1A knockout (KO) hepatocytes. Hence, we postulated that any loss-of-function variation in the gene structure or composition (mutation) could trigger dysfunction, including disrupted transcriptional networks in liver cells. From the International Cancer Genome Consortium (ICGC) database of cancer genomes, we identified several HNF1A mutations located in the functional Pit-Oct-Unc (POU) domain. In our biochemical analysis, we found that the HNF1A POU-domain mutations Y122C, R229Q and V259F suppressed HNF4A promoter activity and disrupted the binding of HNF1A to its target HNF4A promoter without any effect on the nuclear localization. Our results suggest that the decreased transcriptional activity of HNF1A mutants is due to impaired DNA binding. Through structural simulation analysis, we found that a V259F mutation was likely to affect DNA interaction by inducing large conformational changes in the N-terminal region of HNF1A. The results suggest that POU-domain mutations of HNF1A downregulate HNF4A gene expression. Therefore, to mimic the HNF1A mutation phenotype in transcription networks, we performed siRNA-mediated knockdown (KD) of HNF4A. Through RNA-Seq data analysis for the HNF4A KD, we found 748 differentially expressed genes (DEGs), of which 311 genes were downregulated (e.g., HNF1A, ApoB and SOAT2) and 437 genes were upregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed that the DEGs were involved in several signaling pathways (e.g., lipid and cholesterol metabolic pathways). Protein-protein network analysis suggested that the downregulated genes were related to lipid and cholesterol metabolism pathways, which are implicated in hepatocellular carcinoma (HCC) development. Our study demonstrates that mutations of HNF1A in the POU domain result in the downregulation of HNF1A target genes, including HNF4A, and this may trigger HCC development through the disruption of HNF4A-HNF1A transcriptional networks.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Regulación hacia Abajo , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Humanos , Japón , Lípidos , Neoplasias Hepáticas/genética , Mutación
4.
Nat Commun ; 12(1): 6605, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782608

RESUMEN

Dimethylated histone H3 Lys36 (H3K36me2) regulates gene expression, and aberrant H3K36me2 upregulation, resulting from either the overexpression or point mutation of the dimethyltransferase NSD2, is found in various cancers. Here we report the cryo-electron microscopy structure of NSD2 bound to the nucleosome. Nucleosomal DNA is partially unwrapped, facilitating NSD2 access to H3K36. NSD2 interacts with DNA and H2A along with H3. The NSD2 autoinhibitory loop changes its conformation upon nucleosome binding to accommodate H3 in its substrate-binding cleft. Kinetic analysis revealed that two oncogenic mutations, E1099K and T1150A, increase NSD2 catalytic turnover. Molecular dynamics simulations suggested that in both mutants, the autoinhibitory loop adopts an open state that can accommodate H3 more often than the wild-type. We propose that E1099K and T1150A destabilize the interactions that keep the autoinhibitory loop closed, thereby enhancing catalytic turnover. Our analyses guide the development of specific inhibitors of NSD2.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/metabolismo , Metilación de ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Represoras/metabolismo , Microscopía por Crioelectrón , Epigenómica , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/genética , Humanos , Cinética , Metilación , Simulación de Dinámica Molecular , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes , Proteínas Represoras/química , Proteínas Represoras/genética
5.
Nat Commun ; 10(1): 4724, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624313

RESUMEN

Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORFDPF). The crystal structure of MORFDPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORFDPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORFDPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Acilación , Sitios de Unión/genética , Línea Celular Tumoral , Cristalografía por Rayos X , Células HEK293 , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histonas/química , Humanos , Células K562 , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos
6.
J Immunol ; 203(3): 607-626, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31227581

RESUMEN

Vγ2Vδ2 T cells play important roles in human immunity to pathogens and tumors. Their TCRs respond to the sensing of isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate, by butyrophilin (BTN) 3A1. BTN3A1 is an Ig superfamily protein with extracellular IgV/IgC domains and intracellular B30.2 domains that bind prenyl pyrophosphates. We have proposed that intracellular α helices form a coiled-coil dimer that functions as a spacer for the B30.2 domains. To test this, five pairs of anchor residues were mutated to glycine to destabilize the coiled-coil dimer. Despite maintaining surface expression, BTN3A1 mutagenesis either abrogated or decreased stimulation by (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate. BTN3A2 and BTN3A3 proteins and orthologs in alpacas and dolphins are also predicted to have similar coiled-coil dimers. A second short coiled-coil region dimerizes the B30.2 domains. Molecular dynamics simulations predict that mutation of a conserved tryptophan residue in this region will destabilize the dimer, explaining the loss of stimulation by BTN3A1 proteins with this mutation. The juxtamembrane regions of other BTN/BTN-like proteins with B30.2 domains are similarly predicted to assume α helices, with many predicted to form coiled-coil dimers. An exon at the end of this region and the exon encoding the dimerization region for B30.2 domains are highly conserved. We propose that coiled-coil dimers function as rod-like helical molecular spacers to position B30.2 domains, as interaction sites for other proteins, and as dimerization regions to allow sensing by B30.2 domains. In these ways, the coiled-coil domains of BTN3A1 play critical roles for its function.


Asunto(s)
Antígenos CD/genética , Dominio B30.2-SPRY/genética , Butirofilinas/genética , Linfocitos T CD8-positivos/inmunología , Hemiterpenos/inmunología , Organofosfatos/inmunología , Compuestos Organofosforados/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Antígenos CD/inmunología , Butirofilinas/inmunología , Dimerización , Humanos , Activación de Linfocitos/inmunología , Simulación de Dinámica Molecular
7.
J Phys Chem B ; 122(9): 2495-2503, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29439570

RESUMEN

We investigate the problem of artifacts caused by the periodic boundary conditions (PBC) used in molecular simulation studies. Despite the long history of simulations with PBCs, the existence of measurable artifacts originating from PBCs applied to inherently nonperiodic physical systems remains controversial. Specifically, these artifacts appear as differences between simulations of the same system but with different simulation-cell sizes. Earlier studies have implied that, even in the simple case of a small model peptide in water, sampling inefficiency is a major obstacle to understanding these artifacts. In this study, we have resolved the sampling issue using the replica exchange molecular dynamics (REMD) enhanced-sampling method to explore PBC artifacts. Explicitly solvated zwitterionic polyalanine octapeptides with three different cubic-cells, having dimensions of L = 30, 40, and 50 Å, were investigated to elucidate the differences with 64 replica × 500 ns REMD simulations using the AMBER parm99SB force field. The differences among them were not large overall, and the results for the L = 30 and 40 Å simulations in the conformational free energy landscape were found to be very similar at room temperature. However, a small but statistically significant difference was seen for L = 50 Å. We observed that extended conformations were slightly overstabilized in the smaller systems. The origin of these artifacts is discussed by comparison to an electrostatic calculation method without PBCs.


Asunto(s)
Simulación de Dinámica Molecular , Oligopéptidos/química , Péptidos/química , Conformación Proteica , Electricidad Estática
8.
Protein Sci ; 27(3): 769-779, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29271012

RESUMEN

The location and ligand accessibility of internal cavities in cysteine-free wild-type T4 lysozyme was investigated using O2 gas-pressure NMR spectroscopy and molecular dynamics (MD) simulation. Upon increasing the concentration of dissolved O2 in solvent to 8.9 mM, O2 -induced paramagnetic relaxation enhancements (PREs) to the backbone amide and side chain methyl protons were observed, specifically around two cavities in the C-terminal domain. To determine the number of O2 binding sites and their atomic coordinates from the 1/r6 distance dependence of the PREs, we established an analytical procedure using Akaike's Information Criterion, in combination with a grid-search. Two O2 -accessible sites were identified in internal cavities: One site was consistent with the xenon-binding site in the protein in crystal, and the other site was established to be a novel ligand-binding site. MD simulations performed at 10 and 100 mM O2 revealed dioxygen ingress and egress as well as rotational and translational motions of O2 in the cavities. It is therefore suggested that conformational fluctuations within the ground-state ensemble transiently develop channels for O2 association with the internal protein cavities.


Asunto(s)
Muramidasa/química , Muramidasa/metabolismo , Oxígeno/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos , Xenón/química
9.
Biophys J ; 112(9): 1820-1828, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494953

RESUMEN

Internal cavities in proteins produce conformational fluctuations and enable the binding of small ligands. Here, we report a NMR analysis of O2-binding sites by O2-induced paramagnetic relaxation enhancements (PREs) on amide groups of proteins in solution. Outer surface protein A contains a nonglobular single-layer ß-sheet that connects the N- and C-terminal globular domains. Several cavities have been observed in both domains of the crystallized protein structure. The receptor-binding sites are occluded and line the largest cavity of the C-terminal domain. We observed significant O2-induced PREs for amide protons located around the largest cavity and at the central ß-sheet. We suggested three potential O2-accessible sites in the protein based on the 1/r6 distance dependence of the PRE. Two sites were in or close to the largest cavity and the third site was in the surface crevice of the central ß-sheet. These results provide, to our knowledge, the first evidence of ligand binding to the surface crevice and cavity of the protein in solution. Because O2 generally binds more specifically to hydrophobic rather than hydrophilic cavities within a protein, the results also indicated that the receptor-binding sites lining the largest cavity were in the hydrophobic environment in the ground-state conformation. Molecular dynamics simulations permitted the visualization of the rotational and translational motions of O2 within the largest cavity, egress of O2 from the cavity, and ingress of O2 in the surface crevice of the ß-sheet. These molecular dynamics simulation results qualitatively explained the O2-induced changes in NMR observations. Exploring cavities that are sufficiently dynamic to enable access by small molecules can be a useful strategy for the design of stable proteins and their ligands.


Asunto(s)
Antígenos de Superficie/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Vacunas Bacterianas/metabolismo , Lipoproteínas/metabolismo , Oxígeno/metabolismo , Antígenos de Superficie/química , Proteínas de la Membrana Bacteriana Externa/química , Vacunas Bacterianas/química , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas/química , Simulación de Dinámica Molecular , Movimiento (Física) , Dinámicas no Lineales , Resonancia Magnética Nuclear Biomolecular , Oxígeno/química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA