Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Clin Kidney J ; 17(5): sfae119, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766272

RESUMEN

Genome editing technologies, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas in particular, have revolutionized the field of genetic engineering, providing promising avenues for treating various genetic diseases. Chronic kidney disease (CKD), a significant health concern affecting millions of individuals worldwide, can arise from either monogenic or polygenic mutations. With recent advancements in genomic sequencing, valuable insights into disease-causing mutations can be obtained, allowing for the development of new treatments for these genetic disorders. CRISPR-based treatments have emerged as potential therapies, especially for monogenic diseases, offering the ability to correct mutations and eliminate disease phenotypes. Innovations in genome editing have led to enhanced efficiency, specificity and ease of use, surpassing earlier editing tools such as zinc-finger nucleases and transcription activator-like effector nucleases (TALENs). Two prominent advancements in CRISPR-based gene editing are prime editing and base editing. Prime editing allows precise and efficient genome modifications without inducing double-stranded DNA breaks (DSBs), while base editing enables targeted changes to individual nucleotides in both RNA and DNA, promising disease correction in the absence of DSBs. These technologies have the potential to treat genetic kidney diseases through specific correction of disease-causing mutations, such as somatic mutations in PKD1 and PKD2 for polycystic kidney disease; NPHS1, NPHS2 and TRPC6 for focal segmental glomerulosclerosis; COL4A3, COL4A4 and COL4A5 for Alport syndrome; SLC3A1 and SLC7A9 for cystinuria and even VHL for renal cell carcinoma. Apart from editing the DNA sequence, CRISPR-mediated epigenome editing offers a cost-effective method for targeted treatment providing new avenues for therapeutic development, given that epigenetic modifications are associated with the development of various kidney disorders. However, there are challenges to overcome, including developing efficient delivery methods, improving safety and reducing off-target effects. Efforts to improve CRISPR-Cas technologies involve optimizing delivery vectors, employing viral and non-viral approaches and minimizing immunogenicity. With research in animal models providing promising results in rescuing the expression of wild-type podocin in mouse models of nephrotic syndrome and successful clinical trials in the early stages of various disorders, including cancer immunotherapy, there is hope for successful translation of genome editing to kidney diseases.

2.
J Endocrinol ; 261(3)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552310

RESUMEN

Diabetic nephropathy (DN) is one of the most frequent complications of diabetes. Early stages of DN are associated with hyperinsulinemia and progressive insulin resistance in insulin-sensitive cells, including podocytes. The diabetic environment induces pathological changes, especially in podocyte bioenergetics, which is tightly linked with mitochondrial dynamics. The regulatory role of insulin in mitochondrial morphology in podocytes has not been fully elucidated. Therefore, the main goal of the present study was to investigate effects of insulin on the regulation of mitochondrial dynamics and bioenergetics in human podocytes. Biochemical analyses were performed to assess oxidative phosphorylation efficiency by measuring the oxygen consumption rate (OCR) and glycolysis by measuring the extracellular acidification rate (ECAR). mRNA and protein expression were determined by real-time polymerase chain reaction and Western blot. The intracellular mitochondrial network was visualized by MitoTracker staining. All calculations were conducted using CellProfiler software. Short-term insulin exposure exerted inhibitory effects on various parameters of oxidative respiration and adenosine triphosphate production, and glycolysis flux was elevated. After a longer time of treating cells with insulin, an increase in mitochondrial size was observed, accompanied by a reduction of expression of the mitochondrial fission markers DRP1 and FIS1 and an increase in mitophagy. Overall, we identified a previously unknown role for insulin in the regulation of oxidative respiration and glycolysis and elucidated mitochondrial dynamics in human podocytes. The present results emphasize the importance of the duration of insulin stimulation for its metabolic and molecular effects, which should be considered in clinical and experimental studies of DN.


Asunto(s)
Metabolismo Energético , Glucólisis , Insulina , Mitocondrias , Dinámicas Mitocondriales , Podocitos , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Humanos , Dinámicas Mitocondriales/efectos de los fármacos , Insulina/metabolismo , Insulina/farmacología , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Dinaminas/metabolismo , Dinaminas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Fosforilación Oxidativa/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Mitofagia/efectos de los fármacos , Línea Celular
3.
Kidney Int ; 105(4): 744-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995908

RESUMEN

Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.


Asunto(s)
Síndrome Nefrótico , Animales , Niño , Humanos , Ratones , Péptidos y Proteínas de Señalización Intracelular/genética , Queratina-8/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Mutación , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología
4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958836

RESUMEN

Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.


Asunto(s)
Diabetes Mellitus , Enfermedad de Fabry , Enfermedades Renales , Insuficiencia Renal , Humanos , Ratones , Animales , Enfermedad de Fabry/metabolismo , Factores Protectores , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Insuficiencia Renal/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/genética
5.
Med ; 4(11): 761-777.e8, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37863058

RESUMEN

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Enfermedades Renales , Podocitos , Escherichia coli Shiga-Toxigénica , Niño , Humanos , Ratones , Animales , Podocitos/metabolismo , Podocitos/patología , Toxina Shiga/genética , Toxina Shiga/metabolismo , Toxina Shiga/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Síndrome Hemolítico-Urémico/tratamiento farmacológico , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/patología , Escherichia coli Shiga-Toxigénica/metabolismo , Activación de Complemento , Enfermedades Renales/patología
6.
Sci Transl Med ; 15(708): eabc8226, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556557

RESUMEN

Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.


Asunto(s)
Enfermedades Renales , Síndrome Nefrótico , Ratones , Humanos , Animales , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Dependovirus/genética , Albuminuria , Modelos Genéticos , Terapia Genética/métodos , Modelos Animales de Enfermedad , Ratones Noqueados , Vectores Genéticos
7.
J Cell Physiol ; 238(8): 1921-1936, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37269459

RESUMEN

Podocytes are crucially involved in blood filtration in the glomerulus. Their proper function relies on efficient insulin responsiveness. The insulin resistance of podocytes, defined as a reduction of cell sensitivity to this hormone, is the earliest pathomechanism of microalbuminuria that is observed in metabolic syndrome and diabetic nephropathy. In many tissues, this alteration is mediated by the phosphate homeostasis-controlling enzyme nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). By binding to the insulin receptor (IR), NPP1 inhibits downstream cellular signaling. Our previous research found that hyperglycemic conditions affect another protein that is involved in phosphate balance, type III sodium-dependent phosphate transporter 1 (Pit 1). In the present study, we evaluated the insulin resistance of podocytes after 24 h of incubation under hyperinsulinemic conditions. Thereafter, insulin signaling was inhibited. The formation of NPP1/IR complexes was observed at that time. A novel finding in the present study was our observation of an interaction between NPP1 and Pit 1 after the 24 h stimulation of podocytes with insulin. After downregulation of the SLC20A1 gene, which encodes Pit 1, we established insulin resistance in podocytes that were cultured under native conditions, manifested as a lack of intracellular insulin signaling and the inhibition of glucose uptake via the glucose transporter type 4. These findings suggest that Pit 1 might be a major factor that participates in the NPP1-mediated inhibition of insulin signaling.


Asunto(s)
Nefropatías Diabéticas , Resistencia a la Insulina , Podocitos , Humanos , Insulina/farmacología , Insulina/metabolismo , Podocitos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Nefropatías Diabéticas/metabolismo , Fosfatos/metabolismo , Glucosa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
8.
Clin Proteomics ; 20(1): 19, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37076799

RESUMEN

BACKGROUND: Halting progression of chronic kidney disease (CKD) to established end stage kidney disease is a major goal of global health research. The mechanism of CKD progression involves pro-inflammatory, pro-fibrotic, and vascular pathways, but pathophysiological differentiation is currently lacking. METHODS: Plasma samples of 414 non-dialysis CKD patients, 170 fast progressors (with ∂ eGFR-3 ml/min/1.73 m2/year or worse) and 244 stable patients (∂ eGFR of - 0.5 to + 1 ml/min/1.73 m2/year) with a broad range of kidney disease aetiologies, were obtained and interrogated for proteomic signals with SWATH-MS. We applied a machine learning approach to feature selection of proteins quantifiable in at least 20% of the samples, using the Boruta algorithm. Biological pathways enriched by these proteins were identified using ClueGo pathway analyses. RESULTS: The resulting digitised proteomic maps inclusive of 626 proteins were investigated in tandem with available clinical data to identify biomarkers of progression. The machine learning model using Boruta Feature Selection identified 25 biomarkers as being important to progression type classification (Area Under the Curve = 0.81, Accuracy = 0.72). Our functional enrichment analysis revealed associations with the complement cascade pathway, which is relevant to CKD as the kidney is particularly vulnerable to complement overactivation. This provides further evidence to target complement inhibition as a potential approach to modulating the progression of diabetic nephropathy. Proteins involved in the ubiquitin-proteasome pathway, a crucial protein degradation system, were also found to be significantly enriched. CONCLUSIONS: The in-depth proteomic characterisation of this large-scale CKD cohort is a step toward generating mechanism-based hypotheses that might lend themselves to future drug targeting. Candidate biomarkers will be validated in samples from selected patients in other large non-dialysis CKD cohorts using a targeted mass spectrometric analysis.

9.
Clin J Am Soc Nephrol ; 18(6): 727-738, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055195

RESUMEN

BACKGROUND: IgA nephropathy can progress to kidney failure, and risk assessment soon after diagnosis has advantages both for clinical management and the development of new therapeutics. We present relationships among proteinuria, eGFR slope, and lifetime risks for kidney failure. METHODS: The IgA nephropathy cohort (2299 adults and 140 children) of the UK National Registry of Rare Kidney Diseases (RaDaR) was analyzed. Patients enrolled had a biopsy-proven diagnosis of IgA nephropathy plus proteinuria >0.5 g/d or eGFR <60 ml/min per 1.73 m 2 . Incident and prevalent populations and a population representative of a typical phase 3 clinical trial cohort were studied. Analyses of kidney survival were conducted using Kaplan-Meier and Cox regression. eGFR slope was estimated using linear mixed models with random intercept and slope. RESULTS: The median (Q1, Q3) follow-up was 5.9 (3.0, 10.5) years; 50% of patients reached kidney failure or died in the study period. The median (95% confidence interval [CI]) kidney survival was 11.4 (10.5 to 12.5) years; the mean age at kidney failure/death was 48 years, and most patients progressed to kidney failure within 10-15 years. On the basis of eGFR and age at diagnosis, almost all patients were at risk of progression to kidney failure within their expected lifetime unless a rate of eGFR loss ≤1 ml/min per 1.73 m 2 per year was maintained. Time-averaged proteinuria was significantly associated with worse kidney survival and more rapid eGFR loss in incident, prevalent, and clinical trial populations. Thirty percent of patients with time-averaged proteinuria of 0.44 to <0.88 g/g and approximately 20% of patients with time-averaged proteinuria <0.44 g/g developed kidney failure within 10 years. In the clinical trial population, each 10% decrease in time-averaged proteinuria from baseline was associated with a hazard ratio (95% CI) for kidney failure/death of 0.89 (0.87 to 0.92). CONCLUSIONS: Outcomes in this large IgA nephropathy cohort are generally poor with few patients expected to avoid kidney failure in their lifetime. Significantly, patients traditionally regarded as being low risk, with proteinuria <0.88 g/g (<100 mg/mmol), had high rates of kidney failure within 10 years.


Asunto(s)
Glomerulonefritis por IGA , Fallo Renal Crónico , Adulto , Niño , Humanos , Glomerulonefritis por IGA/complicaciones , Glomerulonefritis por IGA/epidemiología , Fallo Renal Crónico/terapia , Tasa de Filtración Glomerular , Riñón , Proteinuria/etiología , Progresión de la Enfermedad , Estudios Retrospectivos
10.
Sci Rep ; 13(1): 766, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641502

RESUMEN

Podocytes constitute an external layer of the glomerular filtration barrier, injury to which is a hallmark of renal disease. Mitochondrial dysfunction often accompanies podocyte damage and is associated with an increase in oxidative stress and apoptosis. ß-Aminoisobutyric acid (BAIBA) belongs to natural ß-amino acids and is known to exert anti-inflammatory and antioxidant effects. BAIBA has been reported to be involved in regulating mitochondrial dynamics, but unknown is whether BAIBA influences podocyte bioenergetics. The present study showed that human podocytes express the BAIBA receptor, Mas-related G protein-coupled receptor type D (MRGPRD), which is sensitive to BAIBA stimulation. The treatment of podocytes with L-BAIBA significantly increased their respiratory parameters, such as basal and maximal respiration, adenosine triphosphate (ATP) production, and spare respiratory capacity. We also found that L-BAIBA altered mitochondrial quantity, size, and shape, promoting organelle elongation and branching. L-BAIBA significantly upregulated peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α) and transcription factor A mitochondrial (TFAM), indicating an increase in mitochondrial biogenesis. Our results demonstrate a novel regulatory mechanism of mitochondrial dynamics in podocytes, which may be important for maintaining their functions in the renal filtration barrier and prompting further investigations of preventing or ameliorating mitochondrial damage in podocytes in pathological states.


Asunto(s)
Podocitos , Humanos , Podocitos/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , Respiración , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
11.
J Cell Physiol ; 237(5): 2478-2491, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35150131

RESUMEN

Soft tissue calcification is a pathological phenomenon that often occurs in end-stage chronic kidney disease (CKD), which is caused by diabetic nephropathy, among other factors. Hyperphosphatemia present during course of CKD contributes to impairments in kidney function, particularly damages in the glomerular filtration barrier (GFB). Essential elements of the GFB include glomerular epithelial cells, called podocytes. In the present study, we found that human immortalized podocytes express messenger RNA and protein of phosphate transporters, including NaPi 2c (SLC34A3), Pit 1 (SLC20A1), and Pit 2 (SLC20A2), which are sodium-dependent and mediate intracellular phosphate (Pi) transport, and XPR1, which is responsible for extracellular Pi transport. We found that cells that were grown in a medium with a high glucose (HG) concentration (30 mM) expressed less Pit 1 and Pit 2 protein than podocytes that were cultured in a standard glucose medium (11 mM). We found that exposure of the analyzed transporters in the cell membrane of the podocyte is altered by HG conditions. We also found that the activity of tissue nonspecific alkaline phosphatase increased in HG, causing a rise in Pi generation. Additionally, HG led to a reduction of the amount of ectonucleotide pyrophosphatase/phosphodiesterase 1 in the cell membrane of podocytes. The extracellular concentration of pyrophosphate also decreased under HG conditions. These data suggest that a hyperglycemic environment enhances the production of Pi in podocytes and its retention in the extracellular space, which may induce glomerular calcification.


Asunto(s)
Calcinosis , Podocitos , Insuficiencia Renal Crónica , Calcinosis/metabolismo , Glucosa/metabolismo , Humanos , Glomérulos Renales/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Podocitos/metabolismo , Insuficiencia Renal Crónica/patología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
12.
Health Technol Assess ; 26(3): 1-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35060851

RESUMEN

BACKGROUND: Most children with steroid-sensitive nephrotic syndrome have relapses that are triggered by upper respiratory tract infections. Four small trials, mostly in children already taking maintenance corticosteroid in countries of different upper respiratory tract infection epidemiology, showed that giving daily low-dose prednisone/prednisolone for 5-7 days during an upper respiratory tract infection reduces the risk of relapse. OBJECTIVES: To determine if these findings were replicated in a large UK population of children with relapsing steroid-sensitive nephrotic syndrome on different background medication or none. DESIGN: A randomised double-blind placebo-controlled trial, including a cost-effectiveness analysis. SETTING: A total of 122 UK paediatric departments, of which 91 recruited patients. PARTICIPANTS: A total of 365 children with relapsing steroid-sensitive nephrotic syndrome (mean age 7.6 ± 3.5 years) were randomised (1 : 1) according to a minimisation algorithm based on background treatment. Eighty children completed 12 months of follow-up without an upper respiratory tract infection. Thirty-two children were withdrawn from the trial (14 prior to an upper respiratory tract infection), leaving a modified intention-to-treat analysis population of 271 children (134 and 137 children in the prednisolone and placebo arms, respectively). INTERVENTIONS: At the start of an upper respiratory tract infection, children received 6 days of prednisolone (15 mg/m2) or an equivalent dose of placebo. MAIN OUTCOME MEASURES: The primary outcome was the incidence of first upper respiratory tract infection-related relapse following any upper respiratory tract infection over 12 months. The secondary outcomes were the overall rate of relapse, changes in background treatment, cumulative dose of prednisolone, rates of serious adverse events, incidence of corticosteroid adverse effects, change in Achenbach Child Behaviour Checklist score and quality of life. Analysis was by intention-to-treat principle. The cost-effectiveness analysis used trial data and a decision-analytic model to estimate quality-adjusted life-years and costs at 1 year, which were then extrapolated over 16 years. RESULTS: There were 384 upper respiratory tract infections and 82 upper respiratory tract infection-related relapses in the prednisolone arm, and 407 upper respiratory tract infections and 82 upper respiratory tract infection-related relapses in the placebo arm. The number of patients experiencing an upper respiratory tract infection-related relapse was 56 (42.7%) and 58 (44.3%) in the prednisolone and placebo arms, respectively (adjusted risk difference -0.024, 95% confidence interval -0.14 to 0.09; p = 0.70). There was no evidence that the treatment effect differed when data were analysed according to background treatment. There were no significant differences in secondary outcomes between treatment arms. Giving daily prednisolone at the time of an upper respiratory tract infection was associated with increased quality-adjusted life-years (0.9427 vs. 0.9424) and decreased average costs (£252 vs. £254), when compared with standard care. The cost saving was driven by background therapy and hospitalisations after relapse. The finding was robust to sensitivity analysis. LIMITATIONS: A larger number of children than expected did not have an upper respiratory tract infection and the sample size attrition rate was adjusted accordingly during the trial. CONCLUSIONS: The clinical analysis indicated that giving 6 days of daily low-dose prednisolone at the time of an upper respiratory tract infection does not reduce the risk of relapse of steroid-sensitive nephrotic syndrome in UK children. However, there was an economic benefit from costs associated with background therapy and relapse, and the health-related quality-of-life impact of having a relapse. FUTURE WORK: Further work is needed to investigate the clinical and health economic impact of relapses, interethnic differences in treatment response, the effect of different corticosteroid regimens in treating relapses, and the pathogenesis of individual viral infections and their effect on steroid-sensitive nephrotic syndrome. TRIAL REGISTRATION: Current Controlled Trials ISRCTN10900733 and EudraCT 2012-003476-39. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 3. See the NIHR Journals Library website for further project information.


Steroid-sensitive nephrotic syndrome is a kidney condition in which protein leaks into the urine, causing generalised swelling. In most children, the condition recurs or relapses. Relapses often occur following an upper respiratory tract infection (i.e. a cough, cold or sore throat). Research in tropical countries suggests that if children have a small dose of daily steroids for a week at the time of an upper respiratory tract infection then they are less likely to relapse. The selection of children for these studies and the different patterns of infection mean that we are not certain if this treatment would work in the UK. A total of 365 children with relapsing nephrotic syndrome took part. Half of the children took a steroid and the other half took dummy tablets (placebo) for 6 days at the start of an upper respiratory tract infection. We followed up the children for 12 months and collected information on relapses and other treatments and information from questionnaires about behaviour and quality of life. We also investigated whether or not there were cost savings with this treatment. There were 271 children who had an upper respiratory tract infection in the 12 months of the study and so only these children were included in the analyses. Giving 6 days of a low-dose steroid at the time of an upper respiratory tract infection did not reduce the risk of a relapse. There was also no effect on the overall number of relapses, the number of children needing to start extra preventative treatments or side effects of steroids. Although there was no clinical effect, the economic evaluation found that giving prednisolone led to lower treatment costs overall and higher quality of life and might, therefore, offer better value for money, but this has to be interpreted against the clinical evidence of no significant effect. Our conclusion is that there is no clinical benefit to giving children low-dose prednisolone at the time of an upper respiratory tract infection.


Asunto(s)
Síndrome Nefrótico , Infecciones del Sistema Respiratorio , Niño , Preescolar , Análisis Costo-Beneficio , Humanos , Recurrencia Local de Neoplasia , Síndrome Nefrótico/tratamiento farmacológico , Prednisolona/efectos adversos , Prednisolona/uso terapéutico , Calidad de Vida , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/epidemiología
13.
Sci Rep ; 10(1): 20349, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230229

RESUMEN

Lithocholic bile acid (LCA) has been reported to selectively kill cancer cells within many tumor cell lines including neuroblastoma or glioblastoma. Wilms' tumor shares similarities with neuro- and glioblastoma. Hence, the aim of the study was to evaluate the effects of LCA on nephroblastoma. To test the effects of LCA, nephroblastoma cell line WT CLS1 was used. SK NEP1 was tested as well. It was originally classified as a nephroblastoma cell line but was meanwhile reclassified as an ewing sarcoma cell line. As control cell lines HEK 293 from embryonic kidney and RC 124 from adult kidney tissue as well as podocytes were used. The effects were evaluated using proliferation assay, caspase activity assay, FACS and Western blot. LCA showed a dose and time-dependent selective effect inducing apoptosis in nephroblastoma cells. However, these effects were not limited to the nephroblastoma cell line but also affected control kidney cell lines and the sarcoma cells; only podocytes are significantly less affected by LCA (at dosages < 200 µm). There were no significant differences regarding the TGR5 receptor expression. The study showed that LCA has a strong, yet unselective effect on all used in vitro cell-lines, sparing the highly differentiated podocytes in lower concentrations. Further studies are needed to verify our results before dismissing LCA as an anti-cancer drug.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Litocólico/farmacología , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Epiteliales/patología , Células HEK293 , Humanos , Podocitos/efectos de los fármacos , Podocitos/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
14.
Nature ; 583(7814): 96-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581362

RESUMEN

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino Unido
15.
Clin J Am Soc Nephrol ; 15(7): 983-994, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32317330

RESUMEN

BACKGROUND AND OBJECTIVES: Intensified immunosuppression in steroid-resistant nephrotic syndrome is broadly applied, with disparate outcomes. This review of patients from the United Kingdom National Study of Nephrotic Syndrome cohort aimed to improve disease stratification by determining, in comprehensively genetically screened patients with steroid-resistant nephrotic syndrome, if there is an association between response to initial intensified immunosuppression and disease progression and/or post-transplant recurrence. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Pediatric patients with steroid-resistant nephrotic syndrome were recruited via the UK National Registry of Rare Kidney Diseases. All patients were whole-genome sequenced, whole-exome sequenced, or steroid-resistant nephrotic syndrome gene-panel sequenced. Complete response or partial response within 6 months of starting intensified immunosuppression was ascertained using laboratory data. Response to intensified immunosuppression and outcomes were analyzed according to genetic testing results, pattern of steroid resistance, and first biopsy findings. RESULTS: Of 271 patients, 178 (92 males, median onset age 4.7 years) received intensified immunosuppression with response available. A total of 4% of patients with monogenic disease showed complete response, compared with 25% of genetic-testing-negative patients (P=0.02). None of the former recurred post-transplantation. In genetic-testing-negative patients, 97% with complete response to first intensified immunosuppression did not progress, whereas 44% of nonresponders developed kidney failure with 73% recurrence post-transplant. Secondary steroid resistance had a higher complete response rate than primary/presumed resistance (43% versus 23%; P=0.001). The highest complete response rate in secondary steroid resistance was to rituximab (64%). Biopsy results showed no correlation with intensified immunosuppression response or outcome. CONCLUSIONS: Patients with monogenic steroid-resistant nephrotic syndrome had a poor therapeutic response and no post-transplant recurrence. In genetic-testing-negative patients, there was an association between response to first intensified immunosuppression and long-term outcome. Patients with complete response rarely progressed to kidney failure, whereas nonresponders had poor kidney survival and a high post-transplant recurrence rate. Patients with secondary steroid resistance were more likely to respond, particularly to rituximab.


Asunto(s)
Inmunosupresores/uso terapéutico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Rituximab/uso terapéutico , Adolescente , Niño , Preescolar , Ciclofosfamida/uso terapéutico , Ciclosporina/uso terapéutico , Progresión de la Enfermedad , Resistencia a Medicamentos , Femenino , Pruebas Genéticas , Humanos , Terapia de Inmunosupresión/métodos , Lactante , Recién Nacido , Fallo Renal Crónico/etiología , Fallo Renal Crónico/cirugía , Trasplante de Riñón , Masculino , Síndrome Nefrótico/patología , Síndrome Nefrótico/cirugía , Periodo Posoperatorio , Recurrencia , Esteroides , Tacrolimus/uso terapéutico , Resultado del Tratamiento
16.
Pediatr Nephrol ; 35(4): 641-648, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31811534

RESUMEN

BACKGROUND: Lowe syndrome and Dent-2 disease are caused by mutations in the OCRL gene, which encodes for an inositol 5-phosphatase. The renal phenotype associated with OCRL mutations typically comprises a selective proximal tubulopathy, which can manifest as Fanconi syndrome in the most extreme cases. METHODS: Here, we report a 12-year-old male with nephrotic-range proteinuria and focal segmental glomerulosclerosis on renal biopsy. As a glomerular pathology was suspected, extensive investigation of tubular function was not performed. RESULTS: Surprisingly, whole exome sequencing identified a genetic variant in OCRL (c1467-2A>G) that introduced a novel splice mutation leading to skipping of exon 15. In situ hybridisation of adult human kidney tissue and zebrafish larvae showed OCRL expression in the glomerulus, supporting a role for OCRL in glomerular function. In cultured podocytes, we found that OCRL associated with the linker protein IPIP27A and CD2AP, a protein that is important for maintenance of the podocyte slit diaphragm. CONCLUSION: Taken together, this work suggests a previously under-appreciated role for OCRL in glomerular function and highlights the importance of investigating tubular function in patients with persistent proteinuria.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Glomérulos Renales/metabolismo , Síndrome Oculocerebrorrenal/genética , Animales , Niño , Canales de Cloruro , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Humanos , Masculino , Mutación , Síndrome Oculocerebrorrenal/complicaciones , Monoéster Fosfórico Hidrolasas , Podocitos/metabolismo , Proteinuria/etiología , Secuenciación del Exoma , Pez Cebra
17.
FEBS J ; 287(10): 2000-2022, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31714001

RESUMEN

We evaluated alterations in the structural configurations of channels and activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome formation in apolipoprotein L1 (APOL1) risk and nonrisk milieus. APOL1G1- and APOL1G2-expressing podocytes (PD) displayed enhanced K+ efflux, induction of pyroptosis, and escalated transcription of interleukin (IL)-1ß and IL-18. APOL1G1- and APOL1G2-expressing PD promoted the transcription as well as translation of proteins involved in the formation of inflammasomes. Since glyburide (a specific inhibitor of K+ efflux channels) inhibited the transcription of NLRP3, IL-1ß, and IL-18, the role of K+ efflux in the activation of inflammasomes in APOL1 risk milieu was implicated. To evaluate the role of structural alterations in K+ channels in plasma membranes, bioinformatics studies, including molecular dynamic simulation, were carried out. Superimposition of bioinformatics reconstructions of APOL1G0, G1, and G2 showed several aligned regions. The analysis of pore-lining residues revealed that Ser342 and Tyr389 are involved in APOL1G0 pore formation and the altered conformations resulting from the Ser342Gly and Ile384Met mutation in the case of APOLG1 and deletion of the Tyr389 residue in the case of APOL1G2 are expected to alter pore characteristics, including K+ ion selectivity. Analysis of multiple membrane (lipid bilayer) models of interaction with the peripheral protein, integral membrane protein, and multimer protein revealed that for an APOL1 multimer model, APOL1G0 is not energetically favorable while the APOL1G1 and APOL1G2 moieties favor the insertion of multiple ion channels into the lipid bilayer. We conclude that altered pore configurations carry the potential to facilitate K+ ion transport in APOL1 risk milieu.


Asunto(s)
Apolipoproteína L1/genética , Inflamasomas/genética , Canales Iónicos/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Membrana Celular/genética , Membrana Celular/ultraestructura , Gliburida/farmacología , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/ultraestructura , Interleucina-18/genética , Interleucina-1beta/genética , Canales Iónicos/antagonistas & inhibidores , Macrófagos/ultraestructura , Proteína con Dominio Pirina 3 de la Familia NLR/ultraestructura , Podocitos/efectos de los fármacos , Podocitos/ultraestructura , Piroptosis/efectos de los fármacos , Piroptosis/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
18.
Front Immunol ; 10: 2659, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798588

RESUMEN

Background: Goodpasture's disease (GP) is mediated by autoantibodies that bind the glomerular and alveolar basement membrane, causing rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. The autoantibodies bind neoepitopes formed upon disruption of the quaternary structure of α345NC1 hexamer, a critical structural domain of α345 collagen IV scaffolds. Hexamer disruption leads to a conformational changes that transitions α3 and α5NC1 subunits into immunogens, however, the trigger remains unknown. This contrasts with another anti-GBM disease, Alports' post-transplant nephritis (APTN), where the pathogenic alloantibody binds directly to native NC1 hexamer. The current report includes the first study of antigenic specificity and allo-incompatability in anti-GBM disease occurring after allogeneic haematopoietic stem cell transplant (HSCT). Results: The anti-GBM antibodies were found to be directed predominantly against the EA epitope of the α3 NC1 monomer of collagen IV and developed rapidly in patient serum reaching peak level within 5 weeks. Autoantibody binding to native α345NC1 hexamer was minimal; however, binding was greatly increased upon dissociation of the native hexamer. There were no polymorphic genetic differences between donor and recipient collagen IV genes which would be predicted to cause a significant NC1 conformational change or to provide a target for antibody binding. Both patient and donor possessed the Goodpasture's susceptibility HLA-allele DRB1*1501. Conclusions: The current report includes the first in-depth study of allo-incompatability and antigenic specificity in anti-GBM disease occurring after allogeneic haematopoietic stem cell transplant (HSCT). No polymorphic genetic differences were identified between donor and recipient collagen IV genes which would be predicted to provide a target for antibody binding. Furthermore, autoantibody binding to native α345NC1 hexamer was minimal, increasing greatly upon dissociation of the native hexamer, resembling wild-type GP diseases and marking this as the first example of a post-HSCT conformeropathy.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Colágeno Tipo IV/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Aloinjertos , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/etiología , Niño , Colágeno Tipo IV/genética , Epítopos/inmunología , Humanos , Isoanticuerpos/inmunología , Trastornos Linfoproliferativos/terapia , Masculino , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/inmunología
19.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31723415

RESUMEN

Podocytes, or glomerular epithelial cells, form the final layer in the glomerular capillary wall of the kidney. Along with the glomerular basement membrane and glomerular endothelial cells, they make up the glomerular filtration barrier which allows the passage of water and small molecules and, in healthy individuals, prevents the passage of albumin and other key proteins. The podocyte is a specialised and terminally differentiated cell with a specific cell morphology that is largely dependent on a highly dynamic underlying cytoskeletal network and that is essential for maintaining glomerular function and integrity in healthy kidneys. The RhoGTPases (RhoA, Rac1 and Cdc42), which act as molecular switches that regulate actin dynamics, are known to play a crucial role in maintaining the cytoskeletal and molecular integrity of the podocyte foot processes in a dynamic manner. Recently, novel protein interaction networks that regulate the RhoGTPases in the podocyte and that are altered by disease have been discovered. This review will discuss these networks and their potential as novel therapeutic targets in nephrotic syndrome. It will also discuss the evidence that they are direct targets for (a) steroids, the first-line agents for the treatment of nephrotic syndrome, and (b) certain kinase inhibitors used in cancer treatment, leading to nephrotoxicity.


Asunto(s)
Enfermedades Renales , Síndrome Nefrótico , Podocitos , Proteínas de Unión al GTP rho , Citoesqueleto , Células Endoteliales , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Proteínas de Unión al GTP rho/fisiología , Proteínas de Unión al GTP rho/uso terapéutico
20.
J Am Soc Nephrol ; 30(10): 1910-1924, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31416818

RESUMEN

BACKGROUND: Mutations in the transient receptor potential channel 6 (TRPC6) gene are associated with an inherited form of FSGS. Despite widespread expression, patients with TRPC6 mutations do not present with any other pathologic phenotype, suggesting that this protein has a unique yet unidentified role within the target cell for FSGS, the kidney podocyte. METHODS: We generated a stable TRPC6 knockout podocyte cell line from TRPC6 knockout mice. These cells were engineered to express wild-type TRPC6, a dominant negative TRPC6 mutation, or either of two disease-causing mutations of TRPC6, G109S or K874*. We extensively characterized these cells using motility, detachment, and calpain activity assays; immunofluorescence; confocal or total internal reflection fluorescence microscopy; and western blotting. RESULTS: Compared with wild-type cells, TRPC6-/- podocytes are less motile and more adhesive, with an altered actin cytoskeleton. We found that TRPC6 binds to ERK1/2 and the actin regulatory proteins, caldesmon (a calmodulin- and actin-binding protein) and calpain 1 and 2 (calcium-dependent cysteine proteases that control the podocyte cytoskeleton, cell adhesion, and motility via cleavage of paxillin, focal adhesion kinase, and talin). Knockdown or expression of the truncated K874* mutation (but not expression of the gain-of-function G019S mutation or dominant negative mutant of TRPC6) results in the mislocalization of calpain 1 and 2 and significant downregulation of calpain activity; this leads to altered podocyte cytoskeleton, motility, and adhesion-characteristics of TRPC6-/- podocytes. CONCLUSIONS: Our data demonstrate that independent of TRPC6 channel activity, the physical interaction between TRPC6 and calpain in the podocyte is important for cell motility and detachment and demonstrates a scaffolding role of the TRPC6 protein in disease.


Asunto(s)
Calpaína/fisiología , Adhesión Celular , Movimiento Celular , Citoesqueleto/fisiología , Podocitos/fisiología , Podocitos/ultraestructura , Canal Catiónico TRPC6/fisiología , Animales , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA