Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Nutr Food Res ; 66(21): e2100990, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35279936

RESUMEN

Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.


Asunto(s)
Enfermedades Cardiovasculares , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiología , Enfermedades Cardiovasculares/prevención & control , Fenoles/farmacología , Inflamación
2.
Nutrients ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35215423

RESUMEN

Major susceptibility to alterations in liver function (e.g., hepatic steatosis) in a prone environment due to circadian misalignments represents a common consequence of recent sociobiological behavior (i.e., food excess and sleep deprivation). Natural compounds and, more concisely, polyphenols have been shown as an interesting tool for fighting against metabolic syndrome and related consequences. Furthermore, mitochondria have been identified as an important target for mediation of the health effects of these compounds. Additionally, mitochondrial function and dynamics are strongly regulated in a circadian way. Thus, we wondered whether some of the beneficial effects of grape-seed procyanidin extract (GSPE) on metabolic syndrome could be mediated by a circadian modulation of mitochondrial homeostasis. For this purpose, rats were subjected to "standard", "cafeteria" and "cafeteria diet + GSPE" treatments (n = 4/group) for 9 weeks (the last 4 weeks, GSPE/vehicle) of treatment, administering the extract/vehicle at diurnal or nocturnal times (ZT0 or ZT12). For circadian assessment, one hour after turning the light on (ZT1), animals were sacrificed every 6 h (ZT1, ZT7, ZT13 and ZT19). Interestingly, GSPE was able to restore the rhythm on clock hepatic genes (Bmal1, Per2, Cry1, Rorα), as this correction was more evident in nocturnal treatment. Additionally, during nocturnal treatment, an increase in hepatic fusion genes and a decrease in fission genes were observed. Regarding mitochondrial complex activity, there was a strong effect of cafeteria diet at nearly all ZTs, and GSPE was able to restore activity at discrete ZTs, mainly in the diurnal treatment (ZT0). Furthermore, a differential behavior was observed in tricarboxylic acid (TCA) metabolites between GSPE diurnal and nocturnal administration times. Therefore, GSPE may serve as a nutritional preventive strategy in the recovery of hepatic-related metabolic disease by modulating mitochondrial dynamics, which is concomitant to the restoration of the hepatic circadian machinery.


Asunto(s)
Extracto de Semillas de Uva , Proantocianidinas , Vitis , Animales , Dieta , Extracto de Semillas de Uva/farmacología , Hígado/metabolismo , Dinámicas Mitocondriales , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacología , Ratas , Ratas Wistar
3.
Crit Rev Food Sci Nutr ; 54(3): 277-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24188302

RESUMEN

Apoptosis is a biological process necessary for maintaining cellular homeostasis. Several diseases can result if it is deregulated. For example, inhibition of apoptotic signaling pathways is linked to the survival of pathological cells, which contributes to cancer, whereas excessive apoptosis is linked to neurodegenerative diseases, partially via oxidative stress. The activation or restoration of apoptosis via extrinsic or intrinsic pathways combined with cell signaling pathways triggered by reactive oxygen specises (ROS) formation is considered a key strategy by which bioactive foods can exert their health effects. Proanthocyanidins, a class of flavonoids naturally found in fruits, vegetables, and beverages, have attracted a great deal of attention not only because they are strong antioxidants but also because they appear to exert a different modulation of apoptosis, stimulating apoptosis in damaged cells, thus preventing cancer or reducing apoptosis in healthy cells, and as a result, preserving the integrity of normal cells and protecting against neurodegenerative diseases. Therefore, proanthocyanidins could provide a defense against apoptosis induced by oxidative stress or directly inhibit apoptosis, and they could also provide a promising treatment for a variety of diseases. Emerging data suggest that proanthocyanidins, especially those that humans can be persuaded to consume, may be used to prevent and manage cancer and mental disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Dieta , Promoción de la Salud , Proantocianidinas/farmacología , Disponibilidad Biológica , Ciclo Celular , Homeostasis , Humanos , Neoplasias/prevención & control , Enfermedades Neurodegenerativas/prevención & control , Estrés Oxidativo , Proantocianidinas/administración & dosificación , Proantocianidinas/farmacocinética , Transducción de Señal/fisiología
4.
Mol Nutr Food Res ; 58(4): 727-37, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24338985

RESUMEN

SCOPE: Increased oxidative stress may play an important role in metabolic syndrome and related manifestations, including obesity, atherosclerosis, hypertension, and insulin resistance. Its relation to obesity is due to increased reactive oxygen species and/or decreased glutathione (GSH) antioxidant metabolism. Consequently, the activation of glutathione metabolism appears to be a central defense response to prevent oxidative stress. In this sense, dietary supplements with natural antioxidant molecules, including proanthocyanidins, may present a useful strategy of controlling and reducing complications of obesity, including hepatic steatosis. MATERIALS AND RESULTS: We assessed the grape seed proanthocyanidin extract (GSPE) effect on oxidative alterations related to genetically obese rats (Zucker rats) and, more specifically, to hepatic GSH metabolism. We demonstrate that the administration of GSPE reduced the oxidized glutathione accumulation increasing the total GSH/oxidized glutathione hepatic ratio and consequently decreasing the activation of antioxidant enzymes, including glutathione peroxidase, glutathione reductase, and glutathione S-transferase, and increasing the total antioxidant capacity of the cell. CONCLUSION: In Zucker rats, the obesity-induced oxidative stress related to liver glutathione alteration was mitigated by GSPE administration.


Asunto(s)
Glutatión/metabolismo , Extracto de Semillas de Uva/farmacología , Hígado/efectos de los fármacos , Obesidad/tratamiento farmacológico , Proantocianidinas/farmacología , Animales , Suplementos Dietéticos , Femenino , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Zucker , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Triglicéridos/metabolismo
5.
Free Radic Biol Med ; 60: 107-14, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23439188

RESUMEN

Acute inflammation is a response to injury, infection, tissue damage, or shock. Bacterial lipopolysaccharide (LPS) is an endotoxin implicated in triggering sepsis and septic shock, and LPS promotes the inflammatory response, resulting in the secretion of proinflammatory and anti-inflammatory cytokines such as the interleukins (IL-6, IL-1ß, and IL-10) and tumor necrosis factor-α by the immune cells. Furthermore, nitric oxide and reactive oxygen species levels increase rapidly, which is partially due to the activation of inducible nitric oxide synthase in several tissues in response to inflammatory stimuli. Previous studies have shown that procyanidins, polyphenols present in foods such as apples, grapes, cocoa, and berries, have several beneficial properties against inflammation and oxidative stress using several in vitro and in vivo models. In this study, the anti-inflammatory and antioxidant effects of two physiological doses and two pharmaceutical doses of grape seed procyanidin extract (GSPE) were analyzed using a rat model of septic shock by the intraperitoneal injection of LPS derived from Escherichia coli. The high nutritional (75mg/kg/day) and the high pharmacological doses (200mg/kg/day) of GSPE showed anti-inflammatory effects by decreasing the proinflammatory marker NOx in the plasma, red blood cells, spleen, and liver. Moreover, the high pharmacological dose also downregulated the genes Il-6 and iNos; and the high nutritional dose decreased the glutathione ratio (GSSG/total glutathione), further illustrating the antioxidant capability of GSPE. In conclusion, several doses of GSPE can alleviate acute inflammation triggered by LPS in rats at the systemic and local levels when administered for as few as 15 days before the injection of endotoxin.


Asunto(s)
Biflavonoides/administración & dosificación , Catequina/administración & dosificación , Extracto de Semillas de Uva/administración & dosificación , Inflamación/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Proantocianidinas/administración & dosificación , Animales , Inflamación/inducido químicamente , Inflamación/patología , Interleucinas/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Choque Séptico/inducido químicamente , Choque Séptico/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo
6.
Mol Nutr Food Res ; 57(1): 58-70, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23165995

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs, approximately 18-25 nucleotides in length, that modulate gene expression at the posttranscriptional level. Thousands of miRNAs have been described, and it is thought that they regulate some aspects of more than 60% of all human cell transcripts. Several polyphenols have been shown to modulate miRNAs related to metabolic homeostasis and chronic diseases. Polyphenolic modulation of miRNAs is very attractive as a strategy to target numerous cell processes and potentially reduce the risk of chronic disease. Evidence is building that polyphenols can target specific miRNAs, such as miR-122, but more studies are necessary to discover and validate additional miRNA targets.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/prevención & control , Hígado Graso/prevención & control , MicroARNs/genética , Obesidad/prevención & control , Polifenoles/farmacología , Adipogénesis/genética , Aminoácidos/metabolismo , Biomarcadores/sangre , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Enfermedad Crónica , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Hígado Graso/genética , Hígado Graso/fisiopatología , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Obesidad/genética , Obesidad/fisiopatología
7.
Mol Nutr Food Res ; 54(1): 37-59, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19960459

RESUMEN

Proanthocyanidins are the most abundant polyphenols in human diets. Epidemiological studies strongly suggest that proanthocyanidins protect against cardiovascular diseases. Despite the antioxidant and anti-inflammatory properties of these flavonoids, one of the mechanisms by which proanthocyanidins exert their cardiovascular protection is improving lipid homeostasis. Animal studies demonstrate that proanthocyanidins reduce the plasma levels of atherogenic apolipoprotein B-triglyceride-rich lipoproteins and LDL-cholesterol but increase antiatherogenic HDL-cholesterol. The results in humans, however, are less clear. This review summarizes the results that have been published on plasma triglyceride, apolipoprotein B, HDL-cholesterol and LDL-cholesterol levels in humans and animal models in response to proanthocyanidin extracts and proanthocyanidin-rich foods. The physiological processes and biochemical pathways that are related to lipid homeostasis and affected by proanthocyanidin consumption are also discussed. Intestinal lipid absorption, chylomicron secretion by the intestine and VLDL secretion by the liver are the processes that are most repressed by proanthocyanidins, which, therefore, induce hypolipidemic effects.


Asunto(s)
Hipolipemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Proantocianidinas/farmacología , Animales , Apolipoproteínas B/sangre , Apolipoproteínas B/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , LDL-Colesterol/sangre , LDL-Colesterol/metabolismo , Dieta , Humanos , Fitoterapia , Triglicéridos/sangre , Triglicéridos/metabolismo
8.
Mol Nutr Food Res ; 52(10): 1172-81, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18720348

RESUMEN

Hypertriglyceridemia is an independent risk factor in the development of cardiovascular diseases, and we have previously reported that oral administration of a grape seed procyanidin extract (GSPE) drastically decreases plasma levels of triglycerides (TG) and apolipoprotein B (ApoB) in normolipidemic rats, with a concomitant induction in the hepatic expression of the nuclear receptor small heterodimer partner (NR0B2/SHP). Our objective in this study was to elucidate whether SHP is the mediator of the reduction of TG-rich ApoB-containing lipoproteins triggered by GSPE. We show that GSPE inhibited TG and ApoB secretion in human hepatocarcinoma HepG2 cells and had and hypotriglyceridemic effect in wild-type mouse. The TG-lowering action of GSPE was abolished in HepG2 cells transfected with a SHP-specific siRNA and in a SHP-null mouse. Moreover, in mouse liver, GSPE downregulated several lipogenic genes, including steroid response element binding protein 1c (SREBP-1c), and upregulated carnitine palmitoyltransferase-1A (CPT-1A) and apolipoprotein A5 (ApoA5), in a SHP-dependent manner. In HepG2 cells GSPE also inhibited ApoB secretion, but in a SHP-independent manner. In conclusion, SHP is a key mediator of the hypotriglyceridemic response triggered by GSPE. This novel signaling pathway of procyanidins through SHP may be relevant to explain the health effects ascribed to the regular consumption of dietary flavonoids.


Asunto(s)
Apolipoproteínas B/biosíntesis , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Triglicéridos/biosíntesis , Animales , Apolipoproteínas B/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular , Silenciador del Gen , Humanos , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/prevención & control , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Proantocianidinas/metabolismo , ARN Interferente Pequeño , Semillas/química , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Vitis/química
9.
Genes Nutr ; 2(1): 105-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18850154

RESUMEN

Procyanidins are the most abundant polyphenols in red wine and are also found in cereals, fruits, chocolate and tea. They exert many beneficial health effects, especially on the cardiovascular system (Bagchi et al. in Mutat Res 523-524:87-97, 2003; Williams et al. in Free Radic Biol Med 36:838-849, 2004; Dell'Agli et al. in Cardiovasc Res 63(4):593-602, 2004; Del Bas et al. FASEB J 19:479-480, 2005). Here, we show that oral administration of a grape seed procyanidins extract (GSPE) to healthy rats results, 5 h after treatment, in a 70% inhibition of metallothionein (MT) gene expression in the liver, as determined by oligonucleotide microarray hybridization. Similarly, in cultured human hepatocytes HepG2, GSPE downregulate the expression of MT genes at the mRNA level, as evaluated by quantitative RTPCR. Thus, mRNA levels of six functional MT genes, MT1A, 1E, 1F, 1G, 1X and MT2A, are diminished between 50 and 80% when HepG2 cells are treated during 12 h with GSPE. Only the expression of two human MT genes, MT1G and MT1E, is transiently increased during the first 2 h of treatment. GSPE-induced inhibition of MT genes expression is dose dependent, at concentrations that are not toxic for the cells. Our findings demonstrate that metallothionein genes are direct targets of procyanidins action, both in vivo and in vitro, in hepatic cells. Thus, this study will help to elucidate the mechanisms by which procyanidin exert their beneficial actions.

10.
FASEB J ; 19(3): 479-81, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15637110

RESUMEN

Moderate consumption of red wine reduces risk of death from cardiovascular disease. The polyphenols in red wine are ultimately responsible for this effect, exerting antiatherogenic actions through their antioxidant capacities and modulating intracellular signaling pathways and transcriptional activities. Lipoprotein metabolism is crucial in atherogenesis, and liver is the principal organ controlling lipoprotein homeostasis. This study was intended to identify the primary effects of procyanidins, the most abundant polyphenols in red wine, on both plasma lipoprotein profile and the expression of genes controlling lipoprotein homeostasis in the liver. We show that procyanidins lowered plasma triglyceride, free fatty acids, apolipoprotein B (apoB), LDL-cholesterol and nonHDL:nonLDL-cholesterol levels and slightly increased HDL-cholesterol. Liver mRNA levels of small heterodimer partner (SHP), cholesterol 7alpha-hydroxylase (CYP7A1), and cholesterol biosynthetic enzymes increased, whereas those of apoAII, apoCI, and apoCIII decreased. Lipoprotein lipase (LPL) mRNA levels increased in muscle and decreased in adipose tissue. In conclusion, procyanidins improve the atherosclerotic risk index in the postprandial state, inducing in the liver the overexpression of CYP7A1 (suggesting an increase of cholesterol elimination via bile acids) and SHP, a nuclear receptor emerging as a key regulator of lipid homeostasis at the transcriptional level. These results could explain, at least in part, the beneficial long-term effects associated with moderate red wine consumption.


Asunto(s)
Colesterol 7-alfa-Hidroxilasa/genética , Hígado/efectos de los fármacos , Proantocianidinas/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Semillas/química , Vitis/química , Animales , Apolipoproteína A-II/genética , Apolipoproteína C-I , Apolipoproteína C-III , Apolipoproteínas B/sangre , Apolipoproteínas C/genética , Arteriosclerosis/prevención & control , Colesterol/análisis , Colesterol/biosíntesis , Colesterol/sangre , Ésteres del Colesterol/análisis , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Expresión Génica , Hígado/química , Hígado/metabolismo , Masculino , ARN Mensajero/análisis , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triglicéridos/análisis , Triglicéridos/sangre , Vino/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA