Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328238

RESUMEN

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

3.
J Exp Clin Cancer Res ; 42(1): 186, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37507802

RESUMEN

INTRODUCTION: The emergence of resistance to the highly successful BCL2-directed therapy is a major unmet need in acute myeloid leukemia (AML), an aggressive malignancy with poor survival rates. Towards identifying therapeutic options for AML patients who progress on BCL2-directed therapy, we studied a clinical-stage CDK7 inhibitor XL102, which is being evaluated in solid tumors (NCT04726332). MATERIALS AND METHODS: To determine the anti-proliferative effects of XL102, we performed experiments including time-resolved fluorescence resonance energy transfer, target occupancy, cell cycle and apoptosis-based assays. We also included genetically characterized primary myeloid blasts from de novo and relapsed/refractory AML patients. For mechanistic studies, CRISPR/Cas9 mediated knockout of CDK7 and c-Myc and immunoblotting were performed. NOD/SCID orthotropic and subcutaneous AML xenografts were used to determine anti-leukemic effects. To assess the synergistic effects of XL102 with Venetoclax, we performed RNA sequencing and gene set enrichment analysis using Venetoclax sensitive and resistant model systems. RESULTS: XL102, a highly specific, orally bioavailable covalent inhibitor of CDK7. Inhibitory effect on CDK7 by XL102 in primary myeloid blasts (n = 54) was in nanomolar range (mean = 300 nM; range = 4.0-952 nM). XL102 treated AML cells showed a reduction in phosphorylation levels of Serine 2/5/7 at carboxy-terminal domain of RNA polymerase II. T-loop phosphorylation of CDK1(Thr161) and CDK2(Thr160) was inhibited by XL102 in dose-dependent manner leading to cell-cycle arrest. c-Myc downregulation and enhanced levels of p53 and p21 in XL102 treated cells were observed. Increased levels of p21 and activation of p53 by XL102 were mimicked by genetic ablation of CDK7, which supports that the observed effects of XL102 are due to CDK7 inhibition. XL102 treated AML xenografts showed remarkable reduction in hCD45 + marrow cells (mean = 0.60%; range = 0.04%-3.53%) compared to vehicle control (mean = 38.2%; range = 10.1%-78%), with corresponding increase in p53, p21 and decrease in c-Myc levels. The data suggests XL102 induces apoptosis in AML cells via CDK7/c-Myc/p53 axis. RNA-sequencing from paired Venetoclax-sensitive and Venetoclax-resistant cells treated with XL102 showed downregulation of genes involved in proliferation and apoptosis. CONCLUSION: Taken together, XL102 with Venetoclax led to synergistic effects in overcoming resistance and provided a strong rationale for clinical evaluation of XL102 as a single agent and in combination with Venetoclax.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Línea Celular Tumoral , Proteína p53 Supresora de Tumor , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Apoptosis , Quinasas Ciclina-Dependientes/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
4.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37190191

RESUMEN

Osimertinib is a third-generation epidermal growth factor receptor and tyrosine kinase inhibitor (EGFR-TKI) approved for the treatment of lung adenocarcinoma patients harboring EGFR mutations. However, acquired resistance to this targeted therapy is inevitable, leading to disease relapse within a few years. Therefore, understanding the molecular mechanisms of osimertinib resistance and identifying novel targets to overcome such resistance are unmet needs of cancer patients. Here, we investigated the efficacy of two novel CDK12/13 inhibitors, AU-15506 and AU-16770, in osimertinib-resistant EGFR mutant lung adenocarcinoma cells in culture and xenograft models in vivo. We demonstrate that these drugs, either alone or in combination with osimertinib, are potent inhibitors of osimertinib-resistant as well as -sensitive lung adenocarcinoma cells in culture. Interestingly, only the CDK12/13 inhibitor in combination with osimertinib, although not as monotherapy, suppresses the growth of resistant tumors in xenograft models in vivo. Taken together, the results of this study suggest that inhibition of CDK12/13 in combination with osimertinib has the potential to overcome osimertinib resistance in EGFR mutant lung adenocarcinoma patients.

5.
Proc Natl Acad Sci U S A ; 120(18): e2221175120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094128

RESUMEN

Diffuse midline gliomas (DMGs) including diffuse intrinsic pontine gliomas (DIPGs) bearing lysine-to-methionine mutations in histone H3 at lysine 27 (H3K27M) are lethal childhood brain cancers. These tumors harbor a global reduction in the transcriptional repressive mark H3K27me3 accompanied by an increase in the transcriptional activation mark H3K27ac. We postulated that H3K27M mutations, in addition to altering H3K27 modifications, reprogram the master chromatin remodeling switch/sucrose nonfermentable (SWI/SNF) complex. The SWI/SNF complex can exist in two main forms termed BAF and PBAF that play central roles in neurodevelopment and cancer. Moreover, BAF antagonizes PRC2, the main enzyme catalyzing H3K27me3. We demonstrate that H3K27M gliomas show increased protein levels of the SWI/SNF complex ATPase subunits SMARCA4 and SMARCA2, and the PBAF component PBRM1. Additionally, knockdown of mutant H3K27M lowered SMARCA4 protein levels. The proteolysis targeting chimera (PROTAC) AU-15330 that simultaneously targets SMARCA4, SMARCA2, and PBRM1 for degradation exhibits cytotoxicity in H3.3K27M but not H3 wild-type cells. AU-15330 lowered chromatin accessibility measured by ATAC-Seq at nonpromoter regions and reduced global H3K27ac levels. Integrated analysis of gene expression, proteomics, and chromatin accessibility in AU-15330-treated cells demonstrated reduction in the levels of FOXO1, a key member of the forkhead family of transcription factors. Moreover, genetic or pharmacologic targeting of FOXO1 resulted in cell death in H3K27M cells. Overall, our results suggest that H3K27M up-regulates SMARCA4 levels and combined targeting of SWI/SNF ATPases in H3.3K27M can serve as a potent therapeutic strategy for these deadly childhood brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Niño , Histonas/genética , Adenosina Trifosfatasas/metabolismo , Lisina/genética , Cromatina , Glioma/genética , Neoplasias Encefálicas/genética , Mutación , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
6.
BioDrugs ; 36(5): 609-623, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36098871

RESUMEN

In the recent past, proteolysis-targeting chimera (PROTAC) technology has received enormous attention for its ability to overcome the limitations of protein inhibitors and its capability to target undruggable proteins. The PROTAC molecule consists of three components, a ubiquitin E3 ligase ligand, a linker, and a target protein ligand. The application of this technology is rapidly gaining momentum, especially in cancer therapy. In this review, we first look at the history of degraders, followed by a section on the ubiquitin proteasome system (UPS) and E3 ligases used in PROTAC development. PROTACs are dependent on the UPS for degradation of target proteins. We further discuss the scope and design of degraders and mitigation strategies for overcoming the hook effect seen with degraders. As PROTACs do not follow Lipinski's 'Rule of 5', these molecules face drug metabolism and pharmacokinetic challenges. A detailed section on absorption, distribution, metabolism, and excretion of degraders is provided wherein we discuss methodologies and strategies to surmount the challenges faced by these molecules. For understanding PROTAC-mediated degradation, the characterization and measurement of protein levels in cells is important. Currently used techniques and recent advancements in assessment tools for degraders are discussed. Furthermore, we examine the challenges and emerging technologies that need to be focused on in order to competently develop potent degraders. Many companies are working in this area of emerging new modality and a few PROTACs have already entered clinical trials; the details of the trials are included in this review.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
7.
J Med Chem ; 65(5): 4350-4366, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35195996

RESUMEN

Mutations in MEK1/2 have been described as a resistance mechanism to BRAF/MEK inhibitor treatment. We report the discovery of a novel ATP-competitive MEK1/2 inhibitor with efficacy in wildtype (WT) and mutant MEK12 models. Starting from a HTS hit, we obtained selective, cellularly active compounds that showed equipotent inhibition of WT MEK1/2 and a panel of MEK1/2 mutant cell lines. Using a structure-based approach, the optimization addressed the liabilities by systematic analysis of molecular matched pairs (MMPs) and ligand conformation. Addition of only three heavy atoms to early tool compound 6 removed Cyp3A4 liabilities and increased the cellular potency by 100-fold, while reducing log P by 5 units. Profiling of MAP855, compound 30, in pharmacokinetic-pharmacodynamic and efficacy studies in BRAF-mutant models showed comparable efficacy to clinical MEK1/2 inhibitors. Compound 30 is a novel highly potent and selective MEK1/2 kinase inhibitor with equipotent inhibition of WT and mutant MEK1/2, whose drug-like properties allow further investigation in the mutant MEK setting upon BRAF/MEK therapy.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , MAP Quinasa Quinasa 1 , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética
8.
Nature ; 601(7893): 434-439, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937944

RESUMEN

The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.


Asunto(s)
Adenosina Trifosfatasas , ADN Helicasas , Proteínas Nucleares , Neoplasias de la Próstata , Factores de Transcripción , Adenosina Trifosfatasas/metabolismo , Animales , Benzamidas , ADN Helicasas/genética , Elementos de Facilitación Genéticos , Genes myc , Factor Nuclear 3-alfa del Hepatocito , Humanos , Masculino , Nitrilos , Proteínas Nucleares/genética , Oncogenes , Feniltiohidantoína , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Receptores Androgénicos , Factores de Transcripción/genética , Regulador Transcripcional ERG , Ensayos Antitumor por Modelo de Xenoinjerto
9.
ACS Med Chem Lett ; 11(12): 2374-2381, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33335659

RESUMEN

Small molecule potent IRAK4 inhibitors from a novel bicyclic heterocycle class were designed and synthesized based on hits identified from Aurigene's compound library. The advanced lead compound, CA-4948, demonstrated good cellular activity in ABC DLBCL and AML cell lines. Inhibition of TLR signaling leading to decreased IL-6 levels was also observed in whole blood assays. CA-4948 demonstrated moderate to high selectivity in a panel of 329 kinases as well as exhibited desirable ADME and PK profiles including good oral bioavailability in mice, rat, and dog and showed >90% tumor growth inhibition in relevant tumor models with excellent correlation with in vivo PD modulation. CA-4948 was well tolerated in toxicity studies in both mouse and dog at efficacious exposure. The overall profile of CA-4948 prompted us to select it as a clinical candidate for evaluation in patients with relapsed or refractory hematologic malignancies including non-Hodgkin lymphoma and acute myeloid leukemia.

10.
Mol Cancer Ther ; 18(1): 28-38, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30301864

RESUMEN

Alterations in the gene encoding for the FGFR and upregulation of the VEGFR are found often in cancer, which correlate with disease progression and unfavorable survival. In addition, FGFR and VEGFR signaling synergistically promote tumor angiogenesis, and activation of FGFR signaling has been described as functional compensatory angiogenic signal following development of resistance to VEGFR inhibition. Several selective small-molecule FGFR kinase inhibitors are currently in clinical development. ODM-203 is a novel, selective, and equipotent inhibitor of the FGFR and VEGFR families. In this report we show that ODM-203 inhibits FGFR and VEGFR family kinases selectively and with equal potency in the low nanomolar range (IC50 6-35 nmol/L) in biochemical assays. In cellular assays, ODM-203 inhibits VEGFR-induced tube formation (IC50 33 nmol/L) with similar potency as it inhibits proliferation in FGFR-dependent cell lines (IC50 50-150 nmol/L). In vivo, ODM-203 shows strong antitumor activity in both FGFR-dependent xenograft models and in an angiogenic xenograft model at similar well-tolerated doses. In addition, ODM-203 inhibits metastatic tumor growth in a highly angiogenesis-dependent kidney capsule syngenic model. Interestingly, potent antitumor activity in the subcutaneous syngenic model correlated well with immune modulation in the tumor microenvironment as indicated by marked decrease in the expression of immune check points PD-1 and PD-L1 on CD8 T cells and NK cells, and increased activation of CD8 T cells. In summary, ODM-203 shows equipotent activity for both FGFR and VEGFR kinase families and antitumor activity in both FGFR and angigogenesis models.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Linfocitos T/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Renales/metabolismo , Células Asesinas Naturales/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533375

RESUMEN

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Adulto , Anciano , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Proteína 1 Asociada A ECH Tipo Kelch/química , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/química , Células-Madre Neurales/metabolismo , Fármacos Neuroprotectores/farmacología , Conformación Proteica/efectos de los fármacos , Ratas , Transducción de Señal
12.
Mol Med Rep ; 3(2): 319-21, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21472241

RESUMEN

This study describes the symmetric synthesis of novel ß-lactams derived from chrysene directed towards their SAR, as well as their biological activities against several cancer cell lines in vitro. To our knowledge, this is the first report on the synthesis and biological evaluation of optically active anticancer ß-lactams. That these anticancer effects are not uniform against all tumor lines suggests that the target of the action of these compounds is highly specific.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA