Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256052

RESUMEN

Breast cancer stands out as the most widespread form of cancer globally. In this study, the anticancer activities of Clerodendrum chinense (C. chinense) stem ethanolic extract were investigated. High-performance liquid chromatography (HPLC) analysis identified verbascoside and isoverbascoside as the major bioactive compounds in the C. chinense stem extract. Successfully developed nanoparticles exhibited favorable hydrodynamic diameter, polydispersity index, and surface charge, thus ensuring stability after four months of storage. The total phenolic content and total flavonoid contents in the nanoparticles were reported as 88.62% and 95.26%, respectively. The C. chinense stem extract demonstrated a dose-dependent inhibitory effect on MCF-7, HeLa, A549, and SKOV-3 cancer cell lines, with IC50 values of 109.2, 155.6, 206.9, and 423 µg/mL, respectively. C. chinense extract and NPs exhibited dose-dependent cytotoxicity and the highest selectivity index values against MCF-7 cells. A dose-dependent reduction in the colony formation of MCF-7 cells was observed following treatment with the extract and nanoparticles. The extract induced cytotoxicity in MCF-7 cells through apoptosis and necrosis. C. chinense stem extract and nanoparticles decreased mitochondrial membrane potential (MMP) and induced G0/G1 phase arrest in MCF-7 cells. In conclusion, use of C. chinense stem extract and nanoparticles may serve as a potential therapeutic approach for breast cancer, thus warranting further exploration.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Clerodendrum , Humanos , Femenino , Potencial de la Membrana Mitocondrial , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis , Puntos de Control del Ciclo Celular , Células HeLa , Proliferación Celular , Extractos Vegetales/farmacología
2.
Sci Rep ; 13(1): 4825, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964207

RESUMEN

Tirandamycin (TAM B) is a tetramic acid antibiotic discovered to be active on a screen designed to find compounds with neuroprotective activity. The producing strain, SBST2-5T, is an actinobacterium that was isolated from wastewater treatment bio-sludge compost collected from Suphanburi province, Thailand. Taxonomic characterization based on a polyphasic approach indicates that strain SBST2-5T is a member of the genus Streptomyces and shows low average nucleotide identity (ANI) (81.7%), average amino-acid identity (AAI) (78.5%), and digital DNA-DNA hybridization (dDDH) (25.9%) values to its closest relative, Streptomyces thermoviolaceus NBRC 13905T, values that are significantly below the suggested cut-off values for the species delineation, indicating that strain SBST2-5T could be considered to represent a novel species of the genus Streptomyces. The analysis of secondary metabolites biosynthetic gene clusters (smBGCs) in its genome and chemical investigation led to the isolation of TAM B. Interestingly, TAM B at 20 µg/mL displayed a suppressive effect on beta-secretase 1 (BACE1) with 68.69 ± 8.84% inhibition. Molecular docking simulation reveals the interaction mechanism between TAM B and BACE1 that TAM B was buried in the pocket of BACE-1 by interacting with amino acids Thr231, Asp 228, Gln73, Lys 107 via hydrogen bond and Leu30, Tyr71, Phe108, Ile118 via hydrophobic interaction, indicating that TAM B represents a potential active BACE1 inhibitor. Moreover, TAM B can protect the neuron cells significantly (% neuron viability = 83.10 ± 9.83% and 112.72 ± 6.83%) from oxidative stress induced by serum deprivation and Aß1-42 administration models at 1 ng/mL, respectively, without neurotoxicity on murine P19-derived neuron cells nor cytotoxicity against Vero cells. This study was reportedly the first study to show the neuroprotective and BACE1 inhibitory activities of TAM B.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Streptomyces , Chlorocebus aethiops , Animales , Ratones , Secretasas de la Proteína Precursora del Amiloide/genética , Simulación del Acoplamiento Molecular , Células Vero , Ácido Aspártico Endopeptidasas/genética , Aminoácidos/genética , ADN , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Ácidos Grasos/química , Técnicas de Tipificación Bacteriana , Hibridación de Ácido Nucleico
3.
Antioxidants (Basel) ; 12(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36830019

RESUMEN

This study aims to investigate the antioxidant and anti-cancer activities of Clerodendrum chinense leaf ethanolic extract. The phenylethanoid glycoside-enriched extract, namely verbascoside and isoverbascoside, was determined in the ethanolic C. chinense leaf extract using the validated HPLC method. The ethanolic extract showed DPPH and ABTS free radical scavenging activities with the IC50 values of 334.2 ± 45.48 µg/mL and 1012.77 ± 61.86 µg/mL, respectively, and a FRAP value of 88.73 ± 4.59 to 2480.81 ± 0.00 µM. C. chinense leaf extract exhibited anti-proliferative activity against A549 lung cancer cells in a dose- and time-dependent manner, with the IC50 value of 340.63 ± 89.43, 210.60 ± 81.74, and 107.08 ± 28.90 µg/mL after treatment for 24, 48, and 72 h, respectively. The IC50 values of verbascoside, isoverbascoside, and hispidulin were 248.40 ± 15.82, 393.10 ± 15.27, and 3.86 ± 0.87 µg/mL, respectively, indicating that the anti-proliferative effects of the C. chinense leaf extract mainly resulted from hispidulin and verbascoside. The selectivity index (SI) of C. chinense leaf extract against A549 lung cancer cells vs. normal keratinocytes were 2.4 and 2.8 after incubation for 24 and 48 h, respectively, suggesting the cytotoxic selectivity of the extract toward the cancer cell line. Additionally, the C. chinense leaf extract at 250 µg/mL induced late apoptotic cells up to 21.67% with enhancing reactive oxygen species (ROS) induction. Furthermore, the lung cancer cell colony formation was significantly inhibited after being treated with C. chinense leaf extract in a dose-dependent manner. The C. chinense leaf extract at 250 µg/mL has also shown to significantly inhibit cancer cell migration compared with the untreated group. The obtained results provide evidence of the anti-lung cancer potentials of the C. chinense leaf ethanolic extract.

4.
Gels ; 9(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36826248

RESUMEN

Oxidative stress is one of the major causes of skin aging. In this study, the shape memory gels containing phytosomes were developed as a delivery system for Nicotiana tabacum var. Virginia fresh (VFL) and dry (VDL) leaf extracts. The extracts were loaded in the phytosomes by a solvent displacement method. The physical and chemical characteristics and stability of phytosomes were evaluated by dynamic light scattering and phytochemistry, respectively. The in vitro antioxidant activity and intracellular reactive oxygen species reduction of phytosomes and/or extracts were investigated by the DPPH and ABTS radical scavenging assays, FRAP assay, and DCFH-DA fluorescent probe. The cytotoxicity and anti-inflammatory activity of VDL and VFL phytosomes were studied by an MTT and a nitric oxide assay, respectively. Here, we first reported the total phenolic content in the dry leaf extract of N. tabacum var. Virginia was significantly greater than that of the fresh leaf extract. The HPLC analysis results revealed that VDL and VFL extracts contained 4.94 ± 0.04 and 3.13 ± 0.01 µg/mL of chlorogenic acid and 0.89 ± 0.00 and 0.24 ± 0.00 µg/mL of rutin, respectively. The phytosomes of the VDL and VFL extracts displayed stable size, polydispersity index, zeta potential values, and good chemical stability. VDL and VDL phytosomes showed higher phenolic and flavonoid contents which showed stronger DPPH and ABTS radical scavenging effects and reduced the intracellular ROS. The results suggested that the phenolic compounds are the main factor in their antioxidant activity. Both VDL and VFL phytosomes inhibited nitric oxide production induced by LPS, suggesting the anti-inflammatory activity of the phytosomes. The shape memory gel containing VDL and VFL phytosomes had good physical stability in terms of pH and viscosity. The VDL and VFL phytosomes dispersed in the shape memory gels can be considered as a promising therapeutic delivery system for protecting the skin from oxidation and reactive oxygen species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA