Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioconjug Chem ; 29(8): 2654-2664, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29979588

RESUMEN

Protein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile. Ultimately, this behavior leads to low conjugation efficiency and contamination with strong noncovalent "conjugates". After exploring the solubility of sEL in various organic solvents, we have established an efficient conjugation methodology for obtaining covalent conjugates virtually free of contaminating noncovalent complexes. When conjugating carboxylated ligands to the amphiphile amines, we demonstrate that even when only one amine (the N-terminus) is present, its derivatization is 98% efficient. When conjugating amine moieties to the amphiphile carboxyls (a problematic configuration), protein multimerization is avoided, 98-100% of the protein is conjugated, and the unreacted ligand is recovered in pure form. Our syntheses occur in "one pot", and our purification procedure is a simple workup utilizing a combination of water and organic solvent extractions. This conjugation methodology might provide a solution to problems arising from solubility mismatch of protein and ligand, and it is likely to be widely applied for modification of recombinant amphiphiles used for drug delivery (PEG-antibodies, polymer-enzymes, food proteins), cell adhesion (collagen, hydrophobins), synthesis of nanostructures (peptides), and engineering of biocompatible optoelectronics (biological polymers), to cite a few.


Asunto(s)
Aminas/química , Elastina/química , Metales/química , Compuestos Orgánicos/química , Polímeros/química , Piridinas/química , Solventes/química , Electroforesis en Gel de Poliacrilamida , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Multimerización de Proteína , Espectroscopía de Protones por Resonancia Magnética , Solubilidad , Espectrofotometría Ultravioleta
2.
PLoS One ; 9(3): e91706, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24643124

RESUMEN

The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide the basis for novel ways of treating or diagnosing Brucellosis.


Asunto(s)
Brucella melitensis/química , Interacciones Huésped-Patógeno , Macrófagos/química , Microdominios de Membrana/química , Proteínas de la Membrana/química , Proteómica , Línea Celular , Detergentes/química , Expresión Génica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Macrófagos/microbiología , Proteínas de la Membrana/genética , Anotación de Secuencia Molecular , Mapeo de Interacción de Proteínas
3.
ACS Appl Mater Interfaces ; 2(3): 738-47, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20356275

RESUMEN

We report the synthesis of a series of water-soluble, fluorescent, conjugated polymers via the Gilch reaction with an overall yield greater than 40%. The yield for the Gilch reaction decreases with the increase in the length of the side chain (ethylene glycol repeat units), presumably due to the steric effects inhibiting the linking of monomeric units. The hydrophilic side chain enhances the solubility of the polymer in water and concomitantly leads to a side-chain-dependent conformation and solvent-dependent quantum efficiency. An increase in the ethylene glycol repeat units on the polymer side chain structure results in changes in chain packing; hence, the crystallinity evolves from semicrystalline to liquid crystalline to completely amorphous. An increase in the length of the side chain leads to changes in the polymer-solvent interaction as manifested in the photophysical properties of these polymers. These novel polymers exhibit two glass transition temperatures, which can be readily rationalized by differences in microstructure when casted from hydrophobic and hydrophilic solvents. Cyclic voltammograms of polymer 1d-3d suggest two-electron transfer, as compared to P1 which has one complete redox pair. The potential of having a nanoscaled domain structure and stabilizing two electrons on a polymer chain signifies the potential of these polymers in fabricating electronic and photovoltaic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA