Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Exp Cell Res ; 442(1): 114224, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39187151

RESUMEN

Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.


Asunto(s)
Proliferación Celular , Metilación de ADN , Proteínas de Unión al ADN , Dioxigenasas , Matriz Extracelular , Melanoma , Proteínas Proto-Oncogénicas , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Línea Celular Tumoral , Metilación de ADN/genética , Matriz Extracelular/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Cultivo de Célula/métodos , Microambiente Tumoral/genética , Invasividad Neoplásica/genética , Hidrogeles/química , Supervivencia Celular/genética
2.
Acta Biomater ; 185: 173-189, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39025391

RESUMEN

Tumor behavior, including its response to treatments, is influenced by interactions between mesenchymal and malignant cells, as well as their spatial arrangement. To study tumor biology and evaluate anticancer drugs, accurate 3D tumor models are essential. Here, we developed an in vitro biomimetic hepatoma microenvironment model by combining an extracellular matrix (3DM-7721). Initially, the internal grid structure, composed of 10/6 % GelMA/gelatin loaded with SMMC-7721 cells, was printed using 3D bioprinting. The external component consisted of fibroblasts and human umbilical vein endothelial cells loaded with 10/3 % GelMA/gelatin. A control model (3DP-7721) lacked external cell loading. GelMA/gelatin hydrogels provided robust structural support and biocompatibility. The SMMC-7721 cells in the 3DM-7721 model exhibit superior tumor-associated gene expression and proliferation characteristics when compared to the 3DP-7721 model. Furthermore, the 3DM-7721 type exhibited increased resistance to anticancer agents. SMMC-7721 cells in the 3DM-7721 model exhibit significant tumorigenicity in nude mice. The 3DM-7721 model group showed pathological characteristics of malignant tumors, with a high degree of deterioration, and a significant positive correlation between malignant tumor-related gene pathways. This high-fidelity 3DM-7721 tumor microenvironment model is invaluable for studying tumor progression, devising effective treatment strategies, and discovering drugs. STATEMENT OF SIGNIFICANCE.


Asunto(s)
Antineoplásicos , Bioimpresión , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones Desnudos , Impresión Tridimensional , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Animales , Bioimpresión/métodos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Ratones , Gelatina/química , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos
3.
Micromachines (Basel) ; 15(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38793154

RESUMEN

This paper presents a biosensor based on the resonant optical tunneling effect (ROTE) for detecting a carcinoembryonic antigen (CEA). In this design, sensing is accomplished through the interaction of the evanescent wave with the CEA immobilized on the sensor's surface. When CEA binds to the anti-CEA, it alters the effective refractive index (RI) on the sensor's surface, leading to shifts in wavelength. This shift can be identified through the cascade coupling of the FP cavity and ROTE cavity in the same mode. Experimental results further show that the shift in resonance wavelength increases with the concentration of CEA. The biosensor responded linearly to CEA concentrations ranging from 1 to 5 ng/mL with a limit of detection (LOD) of 0.5 ng/mL and a total Q factor of 9500. This research introduces a new avenue for identifying biomolecules and cancer biomarkers, which are crucial for early cancer detection.

4.
Aesthetic Plast Surg ; 48(15): 2951-2964, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38528127

RESUMEN

INTRODUCTION: Since 3D printing can be used to design implants according to the specific conditions of patients, it has become an emerging technology in tissue engineering and regenerative medicine. How to improve the mechanical, elastic and adhesion properties of 3D-printed photocrosslinked hydrogels is the focus of cartilage tissue repair and reconstruction research. MATERIALS AND METHODS: We established a strategy for toughening hydrogels by mixing GelMA-DOPA (GD), which is prepared by coupling dopamine (DA) with GelMA, with HAMA, bacterial cellulose (BC) to produce composite hydrogels (HB-GD). HB-GD hydrogel scaffolds were characterized in vitro by scanning electron microscopy (SEM), Young's modulus, swelling property and rheological property tests. And biocompatibility and chondrogenic ability were tested by live/dead staining, DNA quantitative analysis and immunofluorescence staining. Combined with 3D bioprinting technology, mouse chondrocytes (ADTC5) were added to form a biological chain to construct an in vitro model, and the feasibility of the model for nasal cartilage regeneration was verified by cytology evaluation. RESULTS: With the increase of GD concentration, the toughness of the composite hydrogel increased (47.0 ± 2.7 kPa (HB-5GD)-158 ± 3.2 kPa (HB-20GD)), and it had excellent swelling properties, rheological properties and printing properties. The HB-GD composite hydrogel promoted the proliferation and differentiation of ATDC5. Cells in 3D printed scaffolds had higher survival rates (> 95%) and better protein expression than the encapsulated cultures. CONCLUSION: The HB-10GD hydrogel can be made into a porous scaffold with precise shape, good internal pore structure, high mechanical strength and good swelling rate through extrusion 3D printing. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Asunto(s)
Bioimpresión , Dopamina , Hidrogeles , Cartílagos Nasales , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Bioimpresión/métodos , Ratones , Animales , Ingeniería de Tejidos/métodos , Cartílagos Nasales/cirugía , Ensayo de Materiales , Materiales Biocompatibles , Condrocitos
5.
Int J Biol Macromol ; 262(Pt 1): 130075, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340924

RESUMEN

Skin tissue engineering faces challenges due to the absence of vascular architecture, impeding the development of permanent skin replacements. To address this, a heparin-functionalized 3D-printed bioink (GH/HepMA) was formulated to enable sustained delivery of vascular endothelial growth factor (VEGF), comprising 0.3 % (w/v) hyaluronic acid (HA), 10 % (w/v) gelatin methacrylate (GelMA), and 0.5 % (w/v) heparin methacrylate (HepMA). The bioink was then used to print dermal constructs with angiogenic functions, including fibroblast networks and human umbilical vein endothelial cell (HUVEC) networks. GH/HepMA, with its covalently cross-linked structure, exhibits enhanced mechanical properties and heparin stability, allowing for a 21-day sustained delivery of VEGF. Cytocompatibility experiments showed that the GH/HepMA bioink supported fibroblast proliferation and promoted collagen I production. With VEGF present, the GH/HepMA bioink promoted HUVEC proliferation, migration, as well as the formation of a richer capillary-like network. Furthermore, HA within the GH/HepMA bioink enhanced rheological properties and printability. Additionally, 3D-bioprinted dermal constructs showed significant deposition of collagen I and III and mature stable capillary-like structures along the axial direction. In summary, this study offers a promising approach for constructing biomimetic multicellular skin substitutes with angiogenesis-induced functions.


Asunto(s)
Bioimpresión , Factor A de Crecimiento Endotelial Vascular , Humanos , Heparina , Ingeniería de Tejidos , Gelatina/química , Colágeno , Metacrilatos/química , Impresión Tridimensional , Andamios del Tejido/química
6.
Mol Pharm ; 21(2): 760-769, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38175712

RESUMEN

Acoustic kinetic therapy systems that target specific organelles can improve the precision of a sonosensitizer, which is a perfect combination of targeted therapy and sonodynamic therapy (SDT) and plays an important role in current acoustic kinetic therapy. In this study, we loaded PpIX, a sonosensitizer, on targeted-functional carbon dots (CDs) via an amide reaction and then generated the mitochondria-targeted system (Mit-CDs-PpIX) and nucleus-targeted system (Nuc-CDs-PpIX), respectively, to deliver the sonosensitizer. Both systems exhibited minimal cytotoxicity in the absence of ultrasound stimulation. The efficacy of the targeted SDT systems was investigated using methylthiazol tetrazolium (MTT) assays, live/dead staining, flow cytometry, etc. Compared with the free PpIX and mitochondria-targeted system, the nucleus-targeted system is more potent in killing effect under ultrasound stimulation and induces apoptosis with higher intensity. To achieve the equal killing effect, the effective concentration of Nuc-CDs-PpIX is just one third of that of Mit-CDs-PpIX.


Asunto(s)
Terapia por Ultrasonido , Apoptosis , Mitocondrias , Especies Reactivas de Oxígeno , Línea Celular Tumoral
7.
Biotechnol Bioeng ; 120(10): 2853-2864, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227037

RESUMEN

Currently, there is a lack of suitable models for in-vitro studies of malignant melanoma and traditional single cell culture models no longer reproduce tumor structure and physiological complexity well. The tumor microenvironment is closely related to carcinogenesis and it is particularly important to understand how tumor cells interact and communicate with surrounding nonmalignant cells. Three-dimensional (3D) in vitro multicellular culture models can better simulate the tumor microenvironment due to their excellent physicochemical properties. In this study, 3D composite hydrogel scaffolds were prepared from gelatin methacrylate and polyethylene glycol diacrylate hydrogels by 3D printing and light curing techniques, and 3D multicellular in vitro tumor culture models were established by inoculating human melanoma cells (A375) and human fibroblasts cells on them. The cell proliferation, migration, invasion, and drug resistance of the 3D multicellular in vitro model was evaluated. Compared with the single-cell model, the cells in the multicellular model had higher proliferation activity and migration ability, and were easy to form dense structures. Several tumor cell markers, such as matrix metalloproteinase-9 (MMP-9), MMP-2, and vascular endothelial growth factor, were highly expressed in the multicellular culture model, which were more favorable for tumor development. In addition, higher cell survival rate was observed after exposure to luteolin. The anticancer drug resistance result of the malignant melanoma cells in the 3D bioprinted construct demonstrated physiological properties, suggesting the promising potential of current 3D printed tumor model in the development of personalized therapy, especially for discovery of more conducive targeted drugs.


Asunto(s)
Bioimpresión , Melanoma , Humanos , Factor A de Crecimiento Endotelial Vascular , Proliferación Celular , Técnicas de Cultivo de Célula , Impresión Tridimensional , Hidrogeles/química , Bioimpresión/métodos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Microambiente Tumoral
8.
Biomed Opt Express ; 13(6): 3493-3502, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781975

RESUMEN

Superparamagnetic nanoparticles have been widely used as contrast agents in magnetic resonance imaging (MRI). The combined use of multiple imaging modes can provide more accurate information for clinical diagnosis. In this paper, a MRI/fluorescence dual-mode imaging contrast agent was developed by a simple method. The method is to make the fluorescent carbon quantum dots (CDs) adsorbed on the surface of the magnetic composite with pore structure by ultrasonic dispersion. Replacing the traditional methods such as chemical bonding, the fluorescent material is coated on the surface of the composite material. The synthesized composite materials were characterized by the transmission electron microscopy method (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometer (VSM). The results of TEM, FTIR and XPS showed that CDs were successfully coated on the surface of C60@Fe3O4 magnetic composite. The VSM results show that the composite material still maintains superparamagnetism. The cytotoxicity of the material on SMMC-7721 liver cancer cells was detected by the MTT method, and the biocompatibility of the material was verified. By observing the fluorescence distribution in the cell, it is proved that the composite material successfully enters the cell and produces fluorescence. Finally, through the analysis of T2-weighted imaging, it is found that the addition of materials results in an enhanced dark contrast compared to control cells. Therefore, the composite nanomaterials synthesized in this paper can be used as MRI/fluorescence dual-mode imaging contrast agents.

9.
J Microbiol Biotechnol ; 32(4): 531-540, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35058399

RESUMEN

Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.


Asunto(s)
Melanoma , Andamios del Tejido , Proliferación Celular , Humanos , Luteolina/farmacología , Melanoma/tratamiento farmacológico , Impresión Tridimensional , Microambiente Tumoral
10.
J Zhejiang Univ Sci B ; 23(1): 58-73, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35029088

RESUMEN

Carbon nanotube (CNT) composite materials are very attractive for use in neural tissue engineering and biosensor coatings. CNT scaffolds are excellent mimics of extracellular matrix due to their hydrophilicity, viscosity, and biocompatibility. CNTs can also impart conductivity to other insulating materials, improve mechanical stability, guide neuronal cell behavior, and trigger axon regeneration. The performance of chitosan (CS)/polyethylene glycol (PEG) composite scaffolds could be optimized by introducing multi-walled CNTs (MWCNTs). CS/PEG/CNT composite scaffolds with CNT content of 1%, 3%, and 5% (1%=0.01 g/mL) were prepared by freeze-drying. Their physical and chemical properties and biocompatibility were evaluated. Scanning electron microscopy (SEM) showed that the composite scaffolds had a highly connected porous structure. Transmission electron microscope (TEM) and Raman spectroscopy proved that the CNTs were well dispersed in the CS/PEG matrix and combined with the CS/PEG nanofiber bundles. MWCNTs enhanced the elastic modulus of the scaffold. The porosity of the scaffolds ranged from 83% to 96%. They reached a stable water swelling state within 24 h, and swelling decreased with increasing MWCNT concentration. The electrical conductivity and cell adhesion rate of the scaffolds increased with increasing MWCNT content. Immunofluorescence showed that rat pheochromocytoma (PC12) cells grown in the scaffolds had characteristics similar to nerve cells. We measured changes in the expression of nerve cell markers by quantitative real-time polymerase chain reaction (qRT-PCR), and found that PC12 cells cultured in the scaffolds expressed growth-associated protein 43 (GAP43), nerve growth factor receptor (NGFR), and class III ß|-tubulin (TUBB3) proteins. Preliminary research showed that the prepared CS/PEG/CNT scaffold has good biocompatibility and can be further applied to neural tissue engineering research.


Asunto(s)
Quitosano , Nanotubos de Carbono , Animales , Axones , Materiales Biocompatibles/química , Quitosano/química , Nanotubos de Carbono/química , Regeneración Nerviosa , Polietilenglicoles , Porosidad , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
11.
Colloids Surf B Biointerfaces ; 210: 112247, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34861542

RESUMEN

As an emerging cancer treatment strategy, photothermal therapy (PTT) is precise, controllable, minimally invasive, low cost and less toxic side effects, thus photothermal transduction agents have been extensively investigated in recent years. Noble metal nanomaterials with unique localized surface plasmon resonance (LSPR) effects are particularly suitable as photothermal transduction agent, but the currently developed precious noble metal nano photothermal transduction agents face serious problems such as complex synthesis process, poor photothermal performance and high biotoxicity. Moreover, the large amount of reactive oxygen species (ROS) produced during PTT treatment could cause irreversible damage to the healthy tissues surrounding the tumor. In this work, we deposited platinum (Pt) on the tips of gold nanorods (AuNRs) to form dumbbell-shaped Au-Pt bimetallic nanorods (AuPtNRs), and functionalized AuPtNRs with biocompatible polydopamine (PDA) to obtain AuPt@PDA. With 808 nm laser irradiation, the prepared AuPt@PDA exhibited excellent photothermal stability, and its photothermal conversion efficiency (PCE) reached 81.78%, which was significantly higher than that of AuNRs (52.32%) and AuPtNRs (78.76%). With low cytotoxicity, AuPt@PDA decreased cell viability from 91.12% to 39.36% after PTT on cancer cells in vitro, while significantly reducing intracellular ROS levels generated by heat stress. Therefore, the excellent photothermal properties, high cancer cell killing and ROS scavenging activity of AuPt@PDA in PTT could be an ideal candidate for improving therapeutic efficacy while reducing the risk of toxic side effects due to heat stress-induced ROS formation.


Asunto(s)
Nanotubos , Platino (Metal) , Oro , Indoles , Oxígeno , Polímeros
12.
Tissue Eng Regen Med ; 19(1): 59-72, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34665455

RESUMEN

BACKGROUND: Corneal disease is second only to cataract considered as the leading cause of blindness in the world, with high morbidity. Construction of corneal substitutes in vitro by tissue engineering technology to achieve corneal regeneration has become a research hotspot in recent years. We conducted in-depth research on the biocompatibility, physicochemical and mechanical properties of rat bone marrow mesenchymal stem cells (rBM-MSCs)-seeded gelatin methacrylate (GelMA) as a bioengineered cornea. METHODS: Four kinds of GelMA with different concentrations (7, 10, 15 and 30%) were prepared, and their physic-chemical, optical properties, and biocompatibility with rBM-MSCs were characterized. MTT, live/dead staining, cell morphology, immunofluorescence staining and gene expression of keratocyte markers were performed. RESULTS: 7%GelMA hydrogel had higher equilibrium water content and porosity, better optical properties and hydrophilicity. In addition, it is more beneficial to the growth and proliferation of rBM-MSCs. However, the 30%GelMA hydrogel had the best mechanical properties, and could be more conducive to promote the differentiation of rBM-MSCs into keratocyte-like cells. CONCLUSION: As a natural biological scaffold, GelMA hydrogel has good biocompatibility. And it has the ability to promote the differentiation of rBM-MSCs into keratocyte-like cells, which laid a theoretical and experimental foundation for further tissue-engineered corneal stromal transplantation, and provided a new idea for the source of seeded cells in corneal tissue engineering.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Animales , Córnea , Gelatina/química , Hidrogeles/química , Metacrilatos , Ratas
13.
Aesthetic Plast Surg ; 46(2): 947-964, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34312695

RESUMEN

Once cartilage is damaged, its self-repair capacity is very limited. The strategy of tissue engineering has brought a new idea for repairing cartilage defect and cartilage regeneration. In particular, nasal cartilage regeneration is a challenge because of the steady increase in nasal reconstruction after oncologic resection, trauma, or rhinoplasty. From this perspective, three-dimensional (3D) printing has emerged as a promising technology to address the complexity of nasal cartilage regeneration, using patient's image data and computer-aided deposition of cells and biomaterials to precisely fabricate complex, personalized tissue-engineered constructs. In this review, we summarized the major progress of three prevalent 3D printing approaches, including inkjet-based printing, extrusion-based printing and laser-assisted printing. Examples are highlighted to illustrate 3D printing for nasal cartilage regeneration, with special focus on the selection of seeded cell, scaffolds and growth factors. The purpose of this paper is to systematically review recent research about the challenges and progress and look forward to the future of 3D printing techniques for nasal cartilage regeneration.Level of Evidence III This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com/00266 .


Asunto(s)
Cartílagos Nasales , Rinoplastia , Animales , Humanos , Cartílagos Nasales/cirugía , Impresión Tridimensional , Regeneración , Rinoplastia/métodos , Ingeniería de Tejidos
14.
Mater Sci Eng C Mater Biol Appl ; 129: 112360, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579879

RESUMEN

Tissue-engineered skin, as a promising skin substitute, can be used for in vitro skin research and skin repair. However, most of research on tissue-engineered skin tend to ignore the rete ridges (RRs) microstructure, which enhances the adhesion between dermis and epidermis and provides a growth environment for epidermal stem cells. Here, we prepared and characterized photocurable gelatin methacrylated (GelMA) and poly(ethylene glycol) diacrylate (PEGDA) co-network hydrogels with different concentrations. Using a UV curing 3D printer, resin molds were designed and fabricated to create three-dimensional micropatterns and replicated onto GelMA-PEGDA scaffolds. Human keratinocytes (HaCaTs) and human skin fibroblasts (HSFs) were co-cultured on the hydrogel scaffold to prepare tissue-engineered skin. The results showed that 10%GelMA-2%PEGDA hydrogel provides the sufficient mechanical properties and biocompatibility to prepare a human skin model with RRs microstructure, that is, it presents excellent structural support, suitable degradation rate, good bioactivity and is suitable for long-term culturing. Digital microscope image analyses showed the micropattern was well-transferred onto the scaffold surface. Both in vitro and in vivo experiments confirmed the formation of the epidermal layer with undulating microstructure. In wound healing experiments, hydrogel can significantly accelerate wound healing. This study provides a simple and powerful way to mimic the structures of human skin and can make a contribution to skin tissue engineering and wound healing.


Asunto(s)
Gelatina , Hidrogeles , Humanos , Polietilenglicoles , Piel , Ingeniería de Tejidos , Andamios del Tejido
15.
Micromachines (Basel) ; 12(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919667

RESUMEN

Inspired by exceptional point (EP) sensing in non-Hermitian systems, in this work, a label-free biosensor for detecting low-concentration analytes is proposed, via a special multilayer structure: a resonant optical tunneling resonator. Due to the square root topology near the exceptional point, a recognized target analyte perturbs the system deviated from the exceptional point, leading to resolvable modes splitting in the transmission spectrum. The performance of the designed sensor is analyzed by the coupled-mode theory and transfer matrix method, separately. Here, the simulation results demonstrate that the obtained sensitivity is 17,120 nm/imaginary part unit of refractive index (IP) and the theoretical detection limit is 4.2 × 10-8 IP (regarding carcinoembryonic antigen (CEA), the minimum detection value is 1.78 ng). Instead of the typical diffusion manner, the liquid sample is loaded by convection, which can considerably improve the efficiency of sample capture and shorten the response time of the sensor. The sketched sensor may find potential application in the fields of biomedical detection, environment protection, and drinking water safety.

16.
RSC Adv ; 11(5): 2656-2663, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35424209

RESUMEN

Herein, a pH and redox dual-responsive drug delivery system (CDs-Pt(iv)-PEG) was developed based on fluorescence carbon dots (CDs). In this system, cisplatin(iv) prodrug (Pt(iv)) was selected as a model drug to reduce toxic side effects. The aldehyde-functionalized monomethoxy polyethylene glycol (mPEG-CHO) was conjugated to CDs-Pt(iv) to form pH sensitive benzoic imine bond. Owing to the slightly acidic tumor extracellular microenvironment (pH 6.8), the benzoic imine bond was then hydrolyzed, leading to charge reversal and decrease in the hydration radius of the drug-carrying, which facilitated in vivo circulation and tumor targeting. Notably, the cytotoxicity of the drug delivery system on cancer cells was comparable to that of cisplatin, while the side effects on normal cells were significantly reduced. In addition, the system realized recognition of cancer cells by the high-contrast fluorescent imaging. In conclusion, the CDs-Pt(iv)-PEG system provided a promising potential for effective delivery of anticancer drugs and cancer cells screening.

17.
J Photochem Photobiol B ; 215: 112111, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33373860

RESUMEN

Photothermal therapy (PTT) is a non-invasive therapy that is widely used in cancer treatment. Gold nanorods (AuNRs) are particularly suitable as a photothermal reagent due to their unique localized surface plasmon resonance (LSPR) properties. However, bare gold nanorods are not stable enough during radiation to collect enough energy to kill tumor cells. In addition, they showed some biologically toxic originated from the poor colloidal stability and surfactants cetyltrimethyl ammonium bromide (CTAB), making it difficult to apply them directly to clinical research. To solve these problems, a novel nanocomposite was structured by coating silica shell and gold nanocluster on the outer layer of the gold nanorod (AuNRs@SiO2@AuNCs). Compared with the bare gold nanorod, the nanocomposite with the core-shell structure showed superior photothermal effect. The photothermal conversion temperature reached 63 °C under a lower irradiation power. The photothermal conversion efficiency was enhanced to 77.6%. Its photothermal performance remained constant after five cycles of near-infrared laser irradiation, indicating excellent photothermal stability. In vitro cell imaging experiments show that AuNRs@SiO2@ AuNCs can effectively enter tumor cells. By 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis, cancer cells can be effectively killed when exposed to a near-infrared laser. During the synthesis process, the silica and gold nanoclusters replaced the toxic CTAB molecular layer on the surface of AuNRs. Therefore, AuNRs@SiO2@AuNCs has good biocompatibility and fluorescence characteristics. These results suggest that such AuNRs@SiO2@AuNCs nanocomposite shows great potential in imaging guided photothermal therapy for cancer.


Asunto(s)
Oro/química , Oro/uso terapéutico , Nanomedicina/métodos , Nanotubos/química , Imagen Óptica/métodos , Dióxido de Silicio/química , Nanomedicina Teranóstica/métodos , Línea Celular Tumoral , Humanos , Ensayo de Materiales , Porosidad
18.
Colloids Surf B Biointerfaces ; 188: 110768, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31945629

RESUMEN

Thrombosis is a main complication of cancer. It can increase the mortality of cancer patients. Therefore, the anticoagulant heparin (Hep) as an adjuvant therapy was introduced to the drug delivery system based on doxorubicin hydrochloride (DOX)-carbon dots (CDs)-Hyaluronic acid (HA), which obviously enhanced the blood compatibility of the system. Drug release process of the CDs-HA-Hep/DOX system was dual-responsive by HA and pH value. Results of in vitro MTT and scratch tests demonstrated that the drug delivery system could targetedly inhibit growth and migration of cancerous cells. In addition, the system allows visual tracking of the drug based on fluorescence of CDs.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Carbono/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Heparina/química , Ácido Hialurónico/química , Puntos Cuánticos/química , Antibióticos Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Tamaño de la Partícula , Propiedades de Superficie , Células Tumorales Cultivadas
19.
Nanotechnology ; 31(1): 015501, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31530749

RESUMEN

Here we develop a magnetoelastic (ME) nano-biosensor based on the competitive strategy for the detection of a carcinoembryonic antigen (CEA). Specifically, the gold-coated ME material provided a platform and the thiolated single-stranded DNA (HS-DNA) containing a half-complementary sequence towards the CEA aptamer was modified on the surface via Au-S bonding. DNA-templated silver nanoclusters (DNA-AgNCs) containing another half-complementary sequence towards the aptamer were used to amplify the signals by about 2.1 times, compared to those obtained using just the aptamer. CEA aptamers as a bio-recognition element were employed to link HS-DNA and DNA-AgNCs through DNA hybridization. The CEA aptamer preferentially combined with CEA rather than hybridized with DNA. Due to the magnetostrictive nature of the ME materials, the resonant frequency of the nano-biosensor would increase along with the release of DNA-AgNCs and CEA aptamers. The modification process was demonstrated by UV-vis spectra, x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscope (TEM) and an atomic force microscope (AFM). The nano-biosensor has a linear response to the logarithmic CEA concentrations ranging from 2 pg ml-1 to 6.25 ng ml-1, with a limit of detection (LOD) of 1 pg ml-1 and a sensitivity of 105.05 Hz/ng · ml-1. This study provides a low-cost, highly sensitive and wireless method for selective detection of CEA.


Asunto(s)
Aptámeros de Nucleótidos/química , Antígeno Carcinoembrionario/análisis , ADN de Cadena Simple/química , Técnicas Biosensibles/métodos , Humanos , Límite de Detección , Nanopartículas del Metal , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Plata/química , Espectrometría Raman
20.
J Photochem Photobiol B ; 197: 111532, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31212245

RESUMEN

Glutathione (GSH) plays critical roles in many physiological processes usually present in live cells, and altered levels have been linked to some clinical pathological conditions. However, current techniques of GSH detection with fluorescence assay strategies remain poorly researched. In this work, branched polyethylenimine-functionalized carbon dots (PEI-CDs) are synthesized by simple hydrothermal treatment of glucose and PEI. The fluorescence of the PEI-CDs could be efficiently quenched by Cu2+ and then recovered by some biothiols. Basing on this, a "turn-on" fluorescent probe for detecting GSH has been developed using PEI-CDs-Cu2+ system. Compared with traditional probes for GSH detection, a significant advantage of the PEI-CDs-Cu2+ system is that it can be used for GSH detection at both low and high concentrations with different concentration combinations of PEI-CDs and Cu2+. More specifically, two good linear relationships are achieved in the ranges of 0-80 µM and 0-1400 µM for GSH, respectively. Correspondingly, the detection limits of GSH are 0.33 µM and 9.49 µM, respectively. The quantum yields (QYs) of PEI-CDs and PEI-CDs-Cu2++GSH was 9.6% and 4.2%, respectively. Moreover, the PEI-CDs-Cu2+ has excellent optical stability and good biocompatibility. Additionally, it is worth noting that the developed probe has successfully realized the visualization of GSH detection in MGC-803 cells.


Asunto(s)
Cobre/química , Colorantes Fluorescentes/química , Glutatión/análisis , Polietileneimina/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Carbono/química , Línea Celular Tumoral , Humanos , Límite de Detección , Microscopía Confocal , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA