Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Biol Sci ; 20(6): 2261-2263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617531

RESUMEN

Chemokines are very important for carcinogenesis and the development of a malignant phenotype. Lactate is a small molecule produced during glycolysis; recently it has emerged as an immunomodulator that could impact tumor cell behavior. In this paper we explore the interplay between chemokines, glycolysis, and lactate in cancer progression, and propose the existence of a pro-tumoral lactate-chemokine-glycolysis loop driven by high glucose levels.


Asunto(s)
Adyuvantes Inmunológicos , Ácido Láctico , Humanos , Carcinogénesis , Quimiocinas , Glucólisis
2.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628973

RESUMEN

Proteins containing PDZ (post-synaptic density, PSD-95/disc large, Dlg/zonula occludens, ZO-1) domains assemble signaling complexes that orchestrate cell responses. Viral pathogens target host PDZ proteins by coding proteins containing a PDZ-binding motif (PBM). The presence of a PBM in the SARS-CoV-2 E protein contributes to the virus's pathogenicity. SARS-CoV-2 infects epithelia, but also cells from the innate immune response, including monocytes and alveolar macrophages. This process is critical for alterations of the immune response that are related to the deaths caused by SARS-CoV-2. Identification of E-protein targets in immune cells might offer clues to understanding how SARS-CoV-2 alters the immune response. We analyzed the interactome of the SARS-CoV-2 E protein in human monocytes. The E protein was expressed fused to a GFP tag at the amino terminal in THP-1 monocytes, and associated proteins were identified using a proteomic approach. The E-protein interactome provided 372 partners; only 8 of these harbored PDZ domains, including the cell polarity protein ZO-2, the chemoattractant IL-16, and syntenin. We addressed the expression and localization of the identified PDZ proteins along the differentiation of primary and THP-1 monocytes towards macrophages and dendritic cells. Our data highlight the importance of identifying the functions of PDZ proteins in the maintenance of immune fitness and the viral alteration of inflammatory response.


Asunto(s)
COVID-19 , Monocitos , Humanos , SARS-CoV-2 , Proteómica , Macrófagos , Factores de Transcripción
3.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806015

RESUMEN

The PDZ (PSD95, Dlg and ZO-1) genes encode proteins that primarily function as scaffolds of diverse signaling pathways. To date, 153 PDZ genes have been identified in the human genome, most of which have multiple protein isoforms widely studied in epithelial and neural cells. However, their expression and function in immune cells have been poorly studied. Herein, we aimed to assess the transcriptional profiles of 83 PDZ genes in human macrophages (Mɸ) and dendritic cells (DCs) and changes in their relative expression during cell PRR stimulation. Significantly distinct PDZ gene transcriptional profiles were identified under different stimulation conditions. Furthermore, a distinct PDZ gene transcriptional signature was found in Mɸ and DCs under the same phagocytic stimuli. Notably, more than 40 PDZ genes had significant changes in expression, with potentially relevant functions in antigen-presenting cells (APCs). Given that several PDZ proteins are targeted by viral products, our results support that many of these proteins might be viral targets in APCs as part of evasion mechanisms. Our results suggest a distinct requirement for PDZ scaffolds in Mɸ and DCs signaling pathways activation. More assessments on the functions of PDZ proteins in APCs and their role in immune evasion mechanisms are needed.


Asunto(s)
Evasión Inmune , Macrófagos , Células Dendríticas , Humanos , Macrófagos/metabolismo , Transducción de Señal
4.
Biomolecules ; 11(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34944407

RESUMEN

Type 2 diabetes is an established risk factor for tuberculosis, but the underlying mechanisms are largely unknown. We established an in vitro model to analyze the effect of high glucose concentrations in antigen processing and presentation in antigen-presenting cells. Human monocyte-derived macrophages (MDMs) were exposed to high (11 mM and 30 mM) and low (5.5 mM) glucose concentrations and infected with Mycobacterium tuberculosis (Mtb). Flow cytometry was used to analyze the effect of high glucose concentrations in histocompatibility complex (MHC) class II molecules (HLA-DR) and co-stimulatory molecules (CD80 and CD86), indispensable for an adequate antigenic presentation and CD4+ T cell activation. HLA-DR and CD86 were significantly decreased by high glucose concentrations compared with low glucose concentrations. Confocal microscopy was used to detect Rab 5 and Lamp-1, proteins involved in the kinetics of antigen processing as early markers, and Rab 7 and cathepsin D as late markers. We observed a delay in the dynamics of the acquisition of Rab 7 and cathepsin D in high glucose concentrations. Moreover, the kinetics of the formation M. tuberculosis peptide-MHC II complexes in MDMs was decreased under high glucose concentrations, reducing their capacity for T cell activation. These findings suggest that high glucose concentrations directly affect antigenic processing, and therefore antigenic presentation.


Asunto(s)
Antígeno B7-2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Glucosa/efectos adversos , Antígenos HLA-DR/metabolismo , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Presentación de Antígeno/efectos de los fármacos , Antígenos Bacterianos/metabolismo , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Regulación hacia Abajo , Citometría de Flujo , Humanos , Macrófagos/microbiología , Modelos Biológicos
5.
Molecules ; 26(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770776

RESUMEN

PDZ (postsynaptic density (PSD95), discs large (Dlg), and zonula occludens (ZO-1)-dependent interactions are widely distributed within different cell types and regulate a variety of cellular processes. To date, some of these interactions have been identified as targets of small molecules or peptides, mainly related to central nervous system disorders and cancer. Recently, the knowledge of PDZ proteins and their interactions has been extended to various cell types of the immune system, suggesting that their targeting by viral pathogens may constitute an immune evasion mechanism that favors viral replication and dissemination. Thus, the pharmacological modulation of these interactions, either with small molecules or peptides, could help in the control of some immune-related diseases. Deeper structural and functional knowledge of this kind of protein-protein interactions, especially in immune cells, will uncover novel pharmacological targets for a diversity of clinical conditions.


Asunto(s)
Dominios PDZ/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Animales , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/etiología , Enfermedades del Sistema Inmune/metabolismo , Modelos Moleculares , Terapia Molecular Dirigida , Péptidos/uso terapéutico , Unión Proteica/efectos de los fármacos , Conformación Proteica , Relación Estructura-Actividad
6.
J Immunol Res ; 2020: 5649790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411799

RESUMEN

hScrib and hDlg belong to the PDZ family of proteins. Since the identification of these highly phylogenetically conserved scaffolds, an increasing amount of experiments has elucidated the roles of hScrib and hDlg in a variety of cell functions. Remarkably, their participation during the establishment of polarity in epithelial cells is well documented. Although the role of both proteins in the immune system is scantly known, it has become a growing field of investigation. Here, we summarize the interactions and functions of hScrib and hDlg1, which participate in diverse functions involving cell polarization in immune cells, and discuss their relevance in the immune cell biology. The fundamental role of hScrib and hDlg1 during the establishment of the immunological synapse, hence T cell activation, and the recently described role of hScrib in reactive oxygen species production in macrophages and of hDlg1 in cytokine production by dendritic cells highlight the importance of both proteins in immune cell biology. The expression of these proteins in other leukocytes can be anticipated and needs to be confirmed. Due to their multiple interaction domains, there is a wide range of possible interactions of hScrib and hDlg1 that remains to be explored in the immune system.


Asunto(s)
Polaridad Celular/inmunología , Células Dendríticas/inmunología , Homólogo 1 de la Proteína Discs Large/metabolismo , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Linfocitos T/inmunología , Proteínas Supresoras de Tumor/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Inmunidad Celular , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Activación de Linfocitos/inmunología , Macrófagos/metabolismo , Especies Reactivas de Oxígeno , Linfocitos T/metabolismo
7.
J Leukoc Biol ; 108(3): 883-893, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32293058

RESUMEN

We recently reported, for the first time, the expression and regulation of the PDZ polarity proteins Scrib and Dlg1 in human APCs, and also described the viral targeting of these proteins by NS1 of influenza A virus in human dendritic cells (DCs). Scrib plays an important role in reactive oxygen species (ROS) production in Mϕs and uropod formation and migration in T cells, while Dlg1 is important for T cell downstream activation after Ag recognition. Nevertheless, the functions of these proteins in human DCs remain unknown. Here, we knocked-down the expression of both Scrib and Dlg1 in human DCs and then evaluated the expression of co-stimulatory molecules and cytokine production during maturation. We demonstrated that Scrib is necessary for adequate CD86 expression, while Dlg1 is important for CD83 up-regulation and IL-6 production upon maturation, suggesting that Scrib and Dlg1 participate in separate pathways in DCs. Additionally, both proteins are required for adequate IL-12 production after maturation. Furthermore, we showed that the inefficient maturation of DCs induced by Scrib or Dlg1 depletion leads to impaired T cell activation. Our results revealed the previously unknown contribution of Scrib and Dlg1 in human DCs pivotal functions, which may be able to impact innate and adaptive immune response.


Asunto(s)
Presentación de Antígeno , Células Dendríticas/inmunología , Homólogo 1 de la Proteína Discs Large/fisiología , Proteínas de la Membrana/fisiología , Proteínas Supresoras de Tumor/fisiología , Inmunidad Adaptativa , Antígenos CD/biosíntesis , Antígenos CD/genética , Antígeno B7-2/biosíntesis , Antígeno B7-2/genética , Células Cultivadas , Citocinas/biosíntesis , Citocinas/genética , Homólogo 1 de la Proteína Discs Large/antagonistas & inhibidores , Homólogo 1 de la Proteína Discs Large/genética , Técnicas de Silenciamiento del Gen , Humanos , Inmunidad Innata , Inmunoglobulinas/biosíntesis , Inmunoglobulinas/genética , Interleucina-12/metabolismo , Interleucina-6/biosíntesis , Interleucina-6/genética , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Densidad Postsináptica/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba , Antígeno CD83
8.
FASEB J ; 33(10): 10607-10617, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31336050

RESUMEN

PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.


Asunto(s)
Polaridad Celular/inmunología , Interacciones Microbiota-Huesped/inmunología , Dominios PDZ/inmunología , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Virus Linfotrópico T Tipo 1 Humano/inmunología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Evasión Inmune , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Modelos Inmunológicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad
9.
J Leukoc Biol ; 103(4): 731-738, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29345359

RESUMEN

In this work, we identified the expression, regulation, and viral targeting of Scribble and Dlg1 in antigen-presenting cells. Scribble and Dlg1 belong to the family of PDZ (postsynaptic density (PSD95), disc large (Dlg), and zonula occludens (ZO-1)) proteins involved in cell polarity. The relevance of PDZ proteins in cellular functions is reinforced by the fact that many viruses interfere with host PDZ-dependent interactions affecting cellular mechanisms thus favoring viral replication. The functions of Scribble and Dlg have been widely studied in polarized cells such as epithelial and neuron cells. However, within the cells of the immune system, their functions have been described only in T and B lymphocytes. Here we demonstrated that Scribble and Dlg1 are differentially expressed during antigen-presenting cell differentiation and dendritic cell maturation. While both Scribble and Dlg1 seem to participate in distinct dendritic cell functions, both are targeted by the viral protein NS1 of influenza A in a PDZ-dependent manner in dendritic cells. Our findings suggest that these proteins might be involved in the mechanisms of innate immunity and/or antigen processing and presentation that can be hijacked by viral pathogens.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Presentadoras de Antígenos/inmunología , Interacciones Huésped-Patógeno , Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Proteínas de la Membrana/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/virología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/virología , Homólogo 1 de la Proteína Discs Large , Humanos , Gripe Humana/inmunología , Gripe Humana/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Proteínas de la Membrana/genética , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/virología , Dominios PDZ , Proteínas Supresoras de Tumor/genética , Proteínas no Estructurales Virales/genética
10.
Immunol Invest ; 43(5): 436-46, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24654560

RESUMEN

Mycobacterium tuberculosis (Mtb) inhibits dendritric cells (DC) function in order to delay T cell response. Furthermore, there is increasing evidence that genetic diversity of Mtb strains can affect their interaction with the immune system. Beijing genotype has attracted attention because of its high prevalence and multi-drug resistance. Although it is known that this genotype is hypervirulent and differentially activates macrophages when compared to other genotypes, little is known about its interaction with DC. In order to address this issue, murine bone marrow derived DC (BMDC) were stimulated with soluble extracts (SE) from BCG, H37Rv, Canetti and Beijing genotypes. We observed that unlike other mycobacteria strains, SE-Beijing was unable to induce maturation of DC as assessed by cell surface MHC-II expression. DC stimulated with SE-Beijing failed to produce IL-12 and TNF-α, but did secrete IL-10. Interestingly, SE-Beijing induced CCR7 and PDL-1 on BMDC, but did not induce the expression of CD86. When BMDC stimulated with SE-Beijing were used to activate CD4+ cells they were unable to induce a Th1 response when compared with less virulent genotypes. These results indicate that Beijing is able to modulate DC activation and function, which may be related to the pathogenesis induced by this genotype.


Asunto(s)
Células Dendríticas/inmunología , Genotipo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Ratones , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
11.
PLoS One ; 8(5): e63098, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667580

RESUMEN

The non-structural protein 1 (NS1) of influenza A virus (IAV), coded by its third most diverse gene, interacts with multiple molecules within infected cells. NS1 is involved in host immune response regulation and is a potential contributor to the virus host range. Early phylogenetic analyses using 50 sequences led to the classification of NS1 gene variants into groups (alleles) A and B. We reanalyzed NS1 diversity using 14,716 complete NS IAV sequences, downloaded from public databases, without host bias. Removal of sequence redundancy and further structured clustering at 96.8% amino acid similarity produced 415 clusters that enhanced our capability to detect distinct subgroups and lineages, which were assigned a numerical nomenclature. Maximum likelihood phylogenetic reconstruction using RNA sequences indicated the previously identified deep branching separating group A from group B, with five distinct subgroups within A as well as two and five lineages within the A4 and A5 subgroups, respectively. Our classification model proposes that sequence patterns in thirteen amino acid positions are sufficient to fit >99.9% of all currently available NS1 sequences into the A subgroups/lineages or the B group. This classification reduces host and virus bias through the prioritization of NS1 RNA phylogenetics over host or virus phenetics. We found significant sequence conservation within the subgroups and lineages with characteristic patterns of functional motifs, such as the differential binding of CPSF30 and crk/crkL or the availability of a C-terminal PDZ-binding motif. To understand selection pressures and evolution acting on NS1, it is necessary to organize the available data. This updated classification may help to clarify and organize the study of NS1 interactions and pathogenic differences and allow the drawing of further functional inferences on sequences in each group, subgroup and lineage rather than on a strain-by-strain basis.


Asunto(s)
Secuencia Conservada , Filogenia , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Secuencia de Bases , Análisis por Conglomerados , Funciones de Verosimilitud , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Dominios PDZ , Unión Proteica , Proteínas Proto-Oncogénicas c-crk/metabolismo , ARN Viral/genética , Sumoilación
12.
Cytokine ; 62(1): 151-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23434273

RESUMEN

BACKGROUND: Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. METHODS: To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. RESULTS: We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p < 0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. CONCLUSIONS: These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages.


Asunto(s)
Quimiocinas/biosíntesis , ARN Helicasas DEAD-box/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Macrófagos/metabolismo , Pandemias , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunidad/genética , Inmunidad/inmunología , Mediadores de Inflamación/metabolismo , Gripe Humana/epidemiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Macrófagos/virología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Receptores Inmunológicos , Estaciones del Año , Proteína 1 Supresora de la Señalización de Citocinas , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
13.
Clin Dev Immunol ; 2012: 193923, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666281

RESUMEN

Mycobacterium tuberculosis (Mtb) infection is a major international public health problem. One-third of the world's population is thought to have latent tuberculosis, a condition where individuals are infected by the intracellular bacteria without active disease but are at risk for reactivation, if their immune system fails. Here, we discuss the role of nonspecific inflammatory responses mediated by cytokines and chemokines induced by interaction of innate receptors expressed in macrophages and dendritic cells (DCs). We also review current information regarding the importance of several cytokines including IL-17/IL-23 in the development of protective cellular and antibody-mediated protective responses against Mtb and their influence in containment of the infection. Finally, in this paper, emphasis is placed on the mechanisms of failure of Mtb control, including the immune dysregulation induced by the treatment with biological drugs in different autoimmune diseases. Further functional studies, focused on the mechanisms involved in the early host-Mtb interactions and the interplay between host innate and acquired immunity against Mtb, may be helpful to improve the understanding of protective responses in the lung and in the development of novel therapeutic and prophylactic tools in TB.


Asunto(s)
Células Dendríticas/inmunología , Inmunidad Celular , Inmunidad Innata , Macrófagos/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Antituberculosos/uso terapéutico , Células Dendríticas/microbiología , Humanos , Evasión Inmune , Inmunidad Humoral , Mediadores de Inflamación/inmunología , Interleucina-17/inmunología , Interleucina-23/inmunología , Macrófagos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA