Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481808

RESUMEN

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Asunto(s)
Antineoplásicos , Daño por Reperfusión , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Antineoplásicos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958836

RESUMEN

Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.


Asunto(s)
Diabetes Mellitus , Enfermedad de Fabry , Enfermedades Renales , Insuficiencia Renal , Humanos , Ratones , Animales , Enfermedad de Fabry/metabolismo , Factores Protectores , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Insuficiencia Renal/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/genética
3.
Nat Rev Nephrol ; 19(5): 281-299, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36959481

RESUMEN

Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Humanos , Apoptosis/fisiología , Riñón/metabolismo , Necrosis/metabolismo , Necrosis/patología , Lesión Renal Aguda/metabolismo
4.
J Pathol ; 257(3): 285-299, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35152438

RESUMEN

Ferroptosis, a form of regulated necrosis characterized by peroxidation of lipids such as arachidonic acid-containing phosphatidylethanolamine (PE), contributes to the pathogenesis of acute kidney injury (AKI). We have characterized the kidney lipidome in an experimental nephrotoxic AKI induced in mice using folic acid and assessed the impact of the ferroptosis inhibitor Ferrostatin-1. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to assess kidney lipidomics and it discriminated between glomeruli, medulla, and cortex in control kidneys, AKI kidneys, and AKI + Ferrostatin-1 kidneys. Out of 139 lipid species from 16 classes identified, 29 (20.5%) showed significant differences between control and AKI at 48 h. Total PE and lyso-sulfatide species decreased, while phosphatidylinositol (PI) species increased in AKI. Dysregulated mRNA levels for Pemt, Pgs1, Cdipt, and Tamm41, relevant to lipid metabolism, were in line with the lipid changes observed. Ferrostatin-1 prevented AKI and some AKI-associated changes in lipid levels, such as the decrease in PE and lyso-sulfatide species, without changing the gene expression of lipid metabolism enzymes. In conclusion, changes in the kidney lipid composition during nephrotoxic AKI are associated with differential gene expression of lipid metabolism enzymes and are partially prevented by Ferrostatin-1. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Ciclohexilaminas , Fenilendiaminas , Sulfoglicoesfingolípidos , Lesión Renal Aguda/metabolismo , Animales , Ciclohexilaminas/farmacología , Riñón/patología , Ratones , Fenilendiaminas/farmacología , Fosfatidiletanolamina N-Metiltransferasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163470

RESUMEN

Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.


Asunto(s)
Lesión Renal Aguda/metabolismo , Macrófagos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Animales , Biomarcadores/metabolismo , Progresión de la Enfermedad , Humanos , Regeneración , Fenotipo Secretor Asociado a la Senescencia
6.
J Am Soc Nephrol ; 33(2): 357-373, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35046131

RESUMEN

BACKGROUND: Receptor-interacting protein kinase 3 (RIPK3), a component of necroptosis pathways, may have an independent role in inflammation. It has been unclear which RIPK3-expressing cells are responsible for the anti-inflammatory effect of overall Ripk3 deficiency and whether Ripk3 deficiency protects against kidney inflammation occurring in the absence of tubular cell death. METHODS: We used chimeric mice with bone marrow from wild-type and Ripk3-knockout mice to explore RIPK3's contribution to kidney inflammation in the presence of folic acid-induced acute kidney injury AKI (FA-AKI) or absence of AKI and kidney cell death (as seen in systemic administration of the cytokine TNF-like weak inducer of apoptosis [TWEAK]). RESULTS: Tubular and interstitial cell RIPK3 expressions were increased in murine AKI. Ripk3 deficiency decreased NF-κB activation and kidney inflammation in FA-AKI but did not prevent kidney failure. In the chimeric mice, RIPK3-expressing bone marrow-derived cells were required for early inflammation in FA-AKI. The NLRP3 inflammasome was not involved in RIPK3's proinflammatory effect. Systemic TWEAK administration induced kidney inflammation in wild-type but not Ripk3-deficient mice. In cell cultures, TWEAK increased RIPK3 expression in bone marrow-derived macrophages and tubular cells. RIPK3 mediated TWEAK-induced NF-κB activation and inflammatory responses in bone marrow-derived macrophages and dendritic cells and in Jurkat T cells; however, in tubular cells, RIPK3 mediated only TWEAK-induced Il-6 expression. Furthermore, conditioned media from TWEAK-exposed wild-type macrophages, but not from Ripk3-deficient macrophages, promoted proinflammatory responses in cultured tubular cells. CONCLUSIONS: RIPK3 mediates kidney inflammation independently from tubular cell death. Specific targeting of bone marrow-derived RIPK3 may limit kidney inflammation without the potential adverse effects of systemic RIPK3 targeting.


Asunto(s)
Lesión Renal Aguda/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Médula Ósea/metabolismo , Citocina TWEAK/administración & dosificación , Modelos Animales de Enfermedad , Ácido Fólico/toxicidad , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Células Jurkat , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Quimera por Trasplante/metabolismo , Regulación hacia Arriba
7.
J Am Soc Nephrol ; 32(8): 1913-1932, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155062

RESUMEN

BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia. METHODS: To evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection. RESULTS: Meta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation-related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment. CONCLUSIONS: This study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.


Asunto(s)
Citocina TWEAK/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Receptor de TWEAK/metabolismo , Adulto , Animales , Anticuerpos Neutralizantes/farmacología , Apoptosis , Proliferación Celular/efectos de los fármacos , Quistes/metabolismo , Quistes/patología , Citocina TWEAK/antagonistas & inhibidores , Citocina TWEAK/genética , Citocina TWEAK/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis , Expresión Génica , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos , Masculino , Ratones , Persona de Mediana Edad , FN-kappa B/metabolismo , Riñón Poliquístico Autosómico Dominante/fisiopatología , Transducción de Señal , Receptor de TWEAK/genética
8.
Biomedicines ; 9(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672645

RESUMEN

Background: Despite the term acute kidney injury (AKI), clinical biomarkers for AKI reflect function rather than injury and independent markers of injury are needed. Tubular cell death, including necroptotic cell death, is a key feature of AKI. Cyclophilin A (CypA) is an intracellular protein that has been reported to be released during necroptosis. We have now explored CypA as a potential marker for kidney injury in cultured tubular cells and in clinical settings of ischemia-reperfusion injury (IRI), characterized by limitations of current diagnostic criteria for AKI. Methods: CypA was analyzed in cultured human and murine proximal tubular epithelial cells exposed to chemical hypoxia, hypoxia/reoxygenation (H/R) or other cell death (apoptosis, necroptosis, ferroptosis) inducers. Urinary levels of CypA (uCypA) were analyzed in patients after nephron sparing surgery (NSS) in which the contralateral kidney is not disturbed and kidney grafts with initial function. Results: Intracellular CypA remained unchanged while supernatant CypA increased in parallel to cell death induction. uCypA levels were higher in NSS patients with renal artery clamping (that is, with NSS-IRI) than in no clamping (NSS-no IRI), and in kidney transplantation (KT) recipients (KT-IRI) even in the presence of preserved or improving kidney function, while this was not the case for urinary Neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, higher uCypA levels in NSS patients were associated with longer surgery duration and the incidence of AKI increased from 10% when using serum creatinine (sCr) or urinary output criteria to 36% when using high uCypA levels in NNS clamping patients. Conclusions: CypA is released by kidney tubular cells during different forms of cell death, and uCypA increased during IRI-induced clinical kidney injury independently from kidney function parameters. Thus, uCypA is a potential biomarker of kidney injury, which is independent from decreased kidney function.

9.
J Pathol ; 254(1): 5-19, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33512736

RESUMEN

There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Síndrome Cardiorrenal/metabolismo , Citocina TWEAK/metabolismo , Receptor de TWEAK/metabolismo , Animales , Síndrome Cardiorrenal/patología , Corazón , Humanos , Riñón/metabolismo , Riñón/patología
10.
Sci Rep ; 10(1): 2056, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029842

RESUMEN

The lack of effective pharmacological treatments for acute kidney injury (AKI) remains a significant public health problem. Given the involvement of apoptosis and regulated necrosis in the initiation and progression of AKI, the inhibition of cell death may contribute to AKI prevention/recovery. Curcuminoids are a family of plant polyphenols that exhibit attractive biological properties that make them potentially suitable for AKI treatment. Now, in cultured tubular cells, we demonstrated that a crosslinked self-assembled star-shaped polyglutamate (PGA) conjugate of bisdemethoxycurcumin (St-PGA-CL-BDMC) inhibits apoptosis and necroptosis induced by Tweak/TNFα/IFNγ alone or concomitant to caspase inhibition. St-PGA-CL-BDMC also reduced NF-κB activation and subsequent gene transcription. In vivo, St-PGA-CL-BDMC prevented renal cell loss and preserved renal function in mice with folic acid-induced AKI. Mechanistically, St-PGA-CL-BDMC inhibited AKI-induced apoptosis and expression of ferroptosis markers and also decreased the kidney expression of genes involved in tubular damage and inflammation, while preserving the kidney expression of the protective factor, Klotho. Thus, due to renal accumulation and attractive pharmacological properties, the application of PGA-based therapeutics may improve nephroprotective properties of current AKI treatments.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Diarilheptanoides/farmacología , Túbulos Renales/efectos de los fármacos , Ácido Poliglutámico/farmacología , Sustancias Protectoras/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Línea Celular , Diarilheptanoides/química , Diarilheptanoides/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Ácido Fólico/toxicidad , Glucuronidasa/metabolismo , Humanos , Túbulos Renales/patología , Proteínas Klotho , Ratones , Conformación Molecular , FN-kappa B/metabolismo , Necrosis/tratamiento farmacológico , Necrosis/inmunología , Necrosis/patología , Ácido Poliglutámico/química , Ácido Poliglutámico/uso terapéutico , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
11.
Redox Biol ; 32: 101464, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32092686

RESUMEN

Omeprazole, a proton pump inhibitor used to treat peptic ulcer and gastroesophageal reflux disease, has been associated to chronic kidney disease and acute interstitial nephritis. However, whether omeprazole is toxic to renal cells is unknown. Omeprazole has a lethal effect over some cancer cells, and cell death is a key process in kidney disease. Thus, we evaluated the potential lethal effect of omeprazole over tubular cells. Omeprazole induced dose-dependent cell death in human and murine proximal tubular cell lines and in human primary proximal tubular cell cultures. Increased cell death was observed at the high concentrations used in cancer cell studies and also at lower concentrations similar to those in peptic ulcer patient serum. Cell death induced by omeprazole had features of necrosis such as annexin V/7-AAD staining, LDH release, vacuolization and irregular chromatin condensation. Weak activation of caspase-3 was observed but inhibitors of caspases (zVAD), necroptosis (Necrostatin-1) or ferroptosis (Ferrostatin-1) did not prevent omeprazole-induced death. However, omeprazole promoted a strong oxidative stress response affecting mitochondria and lysosomes and the antioxidant N-acetyl-cysteine reduced oxidative stress and cell death. By contrast, iron overload increased cell death. An adaptive increase in the antiapoptotic protein BclxL failed to protect cells. In mice, parenteral omeprazole increased tubular cell death and the expression of NGAL and HO-1, markers of renal injury and oxidative stress, respectively. In conclusion, omeprazole nephrotoxicity may be related to induction of oxidative stress and renal tubular cell death.


Asunto(s)
Riñón , Omeprazol , Animales , Apoptosis , Muerte Celular , Humanos , Ratones , Necrosis , Omeprazol/farmacología , Estrés Oxidativo
12.
Cell Rep ; 29(4): 860-872.e5, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31644909

RESUMEN

In recent years, the macrophage colony-stimulating factor (M-CSF) and granulocyte-macrophage CSF (GM-CSF) cytokines have been identified as opposing regulators of the inflammatory program. However, the two cytokines are simultaneously present in the inflammatory milieu, and it is not clear how cells integrate these signals. In order to understand the regulatory networks associated with the GM/M-CSF signaling axis, we analyzed DNA methylation in human monocytes. Our results indicate that GM-CSF induces activation of the inflammatory program and extensive DNA methylation changes, while M-CSF-polarized cells are in a less differentiated state. This inflammatory program is mediated via JAK2 associated with the GM-CSF receptor and the downstream extracellular signal-regulated (ERK) signaling. However, PI3K signaling is associated with a negative regulatory loop of the inflammatory program and M-CSF autocrine signaling in GM-CSF-polarized monocytes. Our findings describe the regulatory networks associated with the GM/M-CSF signaling axis and how they contribute to the establishment of the inflammatory program associated with monocyte activation.


Asunto(s)
Metilación de ADN , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Monocitos/metabolismo , Transducción de Señal , Adulto , Células Cultivadas , Humanos , Inflamación/genética , Inflamación/metabolismo , Janus Quinasa 2/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
13.
J Pathol ; 249(1): 65-78, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30982966

RESUMEN

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α, PPARGC1A) regulates the expression of genes involved in energy homeostasis and mitochondrial biogenesis. Here we identify inactivation of the transcriptional regulator PGC-1α as a landmark for experimental nephrotoxic acute kidney injury (AKI) and describe the in vivo consequences of PGC-1α deficiency over inflammation and cell death in kidney injury. Kidney transcriptomic analyses of WT mice with folic acid-induced AKI revealed 1398 up- and 1627 downregulated genes. Upstream transcriptional regulator analyses pointed to PGC-1α as the transcription factor potentially driving the observed expression changes with the highest reduction in activity. Reduced PGC-1α expression was shared by human kidney injury. Ppargc1a-/- mice had spontaneous subclinical kidney injury characterized by tubulointerstitial inflammation and increased Ngal expression. Upon AKI, Ppargc1a-/- mice had lower survival and more severe loss of renal function, tubular injury, and reduction in expression of mitochondrial PGC-1α-dependent genes in the kidney, and an earlier decrease in mitochondrial mass than WT mice. Additionally, surviving Ppargc1a-/- mice showed higher rates of tubular cell death, compensatory proliferation, expression of proinflammatory cytokines, NF-κB activation, and interstitial inflammatory cell infiltration. Specifically, Ppargc1a-/- mice displayed increased M1 and decreased M2 responses and expression of the anti-inflammatory cytokine IL-10. In cultured renal tubular cells, PGC-1α targeting promoted spontaneous cell death and proinflammatory responses. In conclusion, PGC-1α inactivation is a key driver of the gene expression response in nephrotoxic AKI and PGC-1α deficiency promotes a spontaneous inflammatory kidney response that is magnified during AKI. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Nefritis Intersticial/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Muerte Celular , Línea Celular , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Ácido Fólico , Humanos , Mediadores de Inflamación/metabolismo , Riñón/patología , Riñón/fisiopatología , Lipocalina 2/genética , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Nefritis Intersticial/genética , Nefritis Intersticial/patología , Nefritis Intersticial/fisiopatología , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal
14.
Trends Mol Med ; 25(4): 341-360, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30926358

RESUMEN

NF-κB-inducing kinase (NIK, MAP3K14) is best known as the apical kinase that triggers non-canonical NF-κB activation and by its role in the immune system. Recent data indicate a role for NIK expressed by non-lymphoid cells in cancer, kidney disease, liver injury, glucose homeostasis, osteosarcopenia, vascular calcification, hematopoiesis, and endothelial function. The spectrum of NIK-associated disease now ranges from immunodeficiency (when NIK is defective) to autoimmunity, cancer, sterile inflammation, fibrosis, and metabolic disease when NIK is overactive. The development of novel small-molecule NIK inhibitors has paved the way to test NIK targeting to treat disease in vivo, and may eventually lead to NIK targeting in the clinic. In addition, NIK activators are being explored for specific conditions such as myeloid leukemia.


Asunto(s)
Biomarcadores , Proteínas Serina-Treonina Quinasas/metabolismo , Heridas y Lesiones/etiología , Heridas y Lesiones/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Inmunomodulación , Mutación , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Transducción de Señal , Heridas y Lesiones/patología , Quinasa de Factor Nuclear kappa B
15.
Nephrol Dial Transplant ; 34(9): 1498-1507, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541139

RESUMEN

BACKGROUND: Mutations in Melanoma Antigen-encoding Gene D2 (MAGED2) promote tubular dysfunction, suggesting that MAGE proteins may play a role in kidney pathophysiology. We have characterized the expression and regulation of MAGE genes in normal kidneys and during kidney disease. METHODS: The expression of MAGE genes and their encoded proteins was explored by systems biology multi-omics (kidney transcriptomics and proteomics) in healthy adult murine kidneys and following induction of experimental acute kidney injury (AKI) by a folic acid overdose. Changes in kidney expression during nephrotoxic AKI were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry. Factors regulating gene expression were studied in cultured tubular cells. RESULTS: Five MAGE genes (MAGED1, MAGED2, MAGED3, MAGEH1, MAGEE1) were expressed at the mRNA level in healthy adult mouse kidneys, as assessed by RNA-Seq. Additionally, MAGED2 was significantly upregulated during experimental AKI as assessed by array transcriptomics. Kidney proteomics also identified MAGED2 as upregulated during AKI. The increased kidney expression of MAGED2 mRNA and protein was confirmed by qRT-PCR and western blot, respectively, in murine folic acid- and cisplatin-induced AKI. Immunohistochemistry located MAGED2 to tubular cells in experimental and human kidney injury. Tubular cell stressors [serum deprivation and the inflammatory cytokine tumour necrosis factor-like weak inducer of apoptosis (TWEAK)] upregulated MAGED2 in cultured tubular cells. CONCLUSIONS: MAGED2 is upregulated in tubular cells in experimental and human kidney injury and is increased by stressors in cultured tubular cells. This points to a role of MAGED2 in tubular cell injury during kidney disease that should be dissected by carefully designed functional approaches.


Asunto(s)
Lesión Renal Aguda/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Neoplasias/metabolismo , Células Epiteliales/patología , Túbulos Renales/patología , Estrés Fisiológico , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos de Neoplasias/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Citocina TWEAK/genética , Citocina TWEAK/metabolismo , Células Epiteliales/metabolismo , Femenino , Túbulos Renales/lesiones , Túbulos Renales/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regulación hacia Arriba
16.
Cell Death Dis ; 9(3): 359, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500402

RESUMEN

Receptor-interacting protein kinases 1 and 3 (RIPK1/3) have best been described for their role in mediating a regulated form of necrosis, referred to as necroptosis. During this process, RIPK3 phosphorylates mixed lineage kinase domain-like (MLKL) to cause plasma membrane rupture. RIPK3-deficient mice have recently been demonstrated to be protected in a series of disease models, but direct evidence for activation of necroptosis in vivo is still limited. Here, we sought to further examine the activation of necroptosis in kidney ischemia-reperfusion injury (IRI) and from TNFα-induced severe inflammatory response syndrome (SIRS), two models of RIPK3-dependent injury. In both models, MLKL-ko mice were significantly protected from injury to a degree that was slightly, but statistically significantly exceeding that of RIPK3-deficient mice. We also demonstrated, for the first time, accumulation of pMLKL in the necrotic tubules of human patients with acute kidney injury. However, our data also uncovered unexpected elevation of blood flow in MLKL-ko animals, which may be relevant to IRI and should be considered in the future. To further understand the mode of regulation of cell death by MLKL, we screened a panel of clinical plasma membrane channel blockers and we found phenytoin to inhibit necroptosis. However, we further found that phenytoin attenuated RIPK1 kinase activity in vitro, likely due to the hydantoin scaffold also present in necrostatin-1, and blocked upstream necrosome formation steps in the cells undergoing necroptosis. We further report that this clinically used anti-convulsant drug displayed protection from kidney IRI and TNFα-induces SIRS in vivo. Overall, our data reveal the relevance of RIPK3-pMLKL regulation for acute kidney injury and identifies an FDA-approved drug that may be useful for immediate clinical evaluation of inhibition of pro-death RIPK1/RIPK3 activities in human diseases.


Asunto(s)
Anticonvulsivantes/farmacología , Necrosis/prevención & control , Fenitoína/farmacología , Lesión Renal Aguda/patología , Animales , Biopsia , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/farmacología
17.
Exp Mol Med ; 49(7): e352, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28684863

RESUMEN

Acute kidney injury (AKI) is characterized by tubular cell death and interstitial inflammation. TWEAK promotes experimental kidney injury and activates the transcription factor NF-κB, a key regulator of genes involved in cell survival and inflammatory response. In search of potential therapeutic targets for AKI, we compared a transcriptomics database of NF-κB-related genes from murine AKI-kidneys with a transcriptomics database of TWEAK-stimulated cultured tubular cells. Four out of twenty-four (17%) genes were significantly upregulated (false discovery rate, FDR<0.05), while nine out of twenty-four (37%) genes were significantly upregulated at FDR <0.1 in both databases. Bcl3 was the top upregulated NF-κB-related gene in experimental AKI and one of the most upregulated genes in TWEAK-stimulated tubular cells. Quantitative reverse transcription PCR (qRT-PCR), western blot and immunohistochemistry confirmed Bcl3 upregulation in both experimental conditions and localized increased Bcl3 expression to tubular cells in AKI. Transcriptomics database analysis revealed increased Bcl3 expression in numerous experimental and human kidney conditions. Furthermore, systemic TWEAK administration increased kidney Bcl3 expression. In cultured tubular cells, targeting Bcl3 by siRNA resulted in the magnification of TWEAK-induced NF-κB transcriptional activity, chemokine upregulation and Klotho downregulation, and in the sensitization to cell death induced by TWEAK/TNFα/interferon-γ. In contrast, Bcl3 overexpression decreased NF-κB transcriptional activity, inflammatory response and cell death while dampening the decrease in Klotho expression. In conclusion, Bcl3 expressed in response to TWEAK stimulation decreases TWEAK-induced inflammatory and lethal responses. Therefore, therapeutic upregulation of Bcl3 activity should be explored in kidney disease because it has advantages over chemical inhibitors of NF-κB that are known to prevent inflammatory responses but can also sensitize the cells to apoptosis.


Asunto(s)
Lesión Renal Aguda/metabolismo , Citocina TWEAK/metabolismo , Inflamación/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Lesión Renal Aguda/patología , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Proteínas del Linfoma 3 de Células B , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Glucuronidasa/metabolismo , Humanos , Inflamación/patología , Interferón gamma/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Proteínas Klotho , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Factores de Transcripción/genética , Transcriptoma/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Clin Sci (Lond) ; 131(14): 1617-1629, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28667063

RESUMEN

The KDIGO definition of chronic kidney disease (CKD) allowed a more detailed characterization of CKD causes, epidemiology and consequences. The picture that has emerged is worrisome from the point of view of translation. CKD was among the fastest growing causes of death in the past 20 years in age-adjusted terms. The gap between recent advances and the growing worldwide mortality appears to result from sequential roadblocks that limit the flow from basic research to clinical development (translational research type 1, T1), from clinical development to clinical practice (translational research T2) and result in deficient widespread worldwide implementation of already available medical advances (translational research T3). We now review recent advances and novel concepts that have the potential to change the practice of nephrology in order to improve the outcomes of the maximal number of individuals in the shortest possible interval. These include: (i) updating the CKD concept, shifting the emphasis to the identification, risk stratification and care of early CKD and redefining the concept of aging-associated 'physiological' decline of renal function; (ii) advances in the characterization of aetiological factors, including challenging the concept of hypertensive nephropathy, the better definition of the genetic contribution to CKD progression, assessing the role of the liquid biopsy in aetiological diagnosis and characterizing the role of drugs that may be applied to the earliest stages of injury, such as SGLT2 inhibitors in diabetic kidney disease (DKD); (iii) embracing the complexity of CKD as a network disease and (iv) exploring ways to optimize implementation of existing knowledge.


Asunto(s)
Insuficiencia Renal Crónica/diagnóstico , Investigación Biomédica Traslacional/métodos , Nefropatías Diabéticas/tratamiento farmacológico , Progresión de la Enfermedad , Diagnóstico Precoz , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Humanos , Pruebas de Función Renal/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/fisiopatología , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2
19.
J Cell Mol Med ; 21(1): 154-164, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27599751

RESUMEN

Current therapy for chronic kidney disease (CKD) is unsatisfactory because of an insufficient understanding of its pathogenesis. Matrix remodelling-associated protein 5 (MXRA5, adlican) is a human protein of unknown function with high kidney tissue expression, not present in rodents. Given the increased expression of MXRA5 in injured tissues, including the kidneys, we have suggested that MXRA5 may modulate kidney injury. MXRA5 immunoreactivity was observed in tubular cells in human renal biopsies and in urine from CKD patients. We then explored factors regulating MXRA5 expression and MXRA5 function in cultured human proximal tubular epithelial cells and explored MXRA5 expression in kidney cancer cells and kidney tissue. The fibrogenic cytokine transforming growth factor-ß1 (TGFß1) up-regulated MXRA5 mRNA and protein expression. TGFß1-induced MXRA5 up-regulation was prevented by either interference with TGFß1 activation of the TGFß receptor 1 (TGFBR1, ALK5) or by the vitamin D receptor agonist paricalcitol. By contrast, the pro-inflammatory cytokine TWEAK did not modulate MXRA5 expression. MXRA5 siRNA-induced down-regulation of constitutive MXRA5 expression resulted in higher TWEAK-induced expression of chemokines. In addition, MXRA5 down-regulation resulted in a magnified expression of genes encoding extracellular matrix proteins in response to TGFß1. Furthermore, in clear cell renal cancer, von Hippel-Lindau (VHL) regulated MXRA5 expression. In conclusion, MXRA5 is a TGFß1- and VHL-regulated protein and, for the first time, we identify MXRA5 functions as an anti-inflammatory and anti-fibrotic molecule. This information may yield clues to design novel therapeutic strategies in diseases characterized by inflammation and fibrosis.


Asunto(s)
Antiinflamatorios/metabolismo , Fibrosis/metabolismo , Inflamación/metabolismo , Proteoglicanos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Carcinoma de Células Renales/metabolismo , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/metabolismo , Ergocalciferoles/farmacología , Humanos , Riñón/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
20.
Sci Rep ; 6: 28857, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27353019

RESUMEN

TNF-like weak inducer of apoptosis (TWEAK) receptor Fn14 is expressed by podocytes and Fn14 deficiency protects from experimental proteinuric kidney disease. However, the downstream effectors of TWEAK/Fn14 in podocytes are poorly characterized. We have explored TWEAK activation of non-canonical NFκB signaling in cultured podocytes. In cultured podocytes, TWEAK increased the expression of the chemokines CCL21, CCL19 and RANTES in a time-dependent manner. The inhibitor of canonical NFκB activation parthenolide inhibited the CCL19 and the early RANTES responses, but not the CCL21 or late RANTES responses. In this regard, TWEAK induced non-canonical NFκB activation in podocytes, characterized by NFκB2/p100 processing to NFκB2/p52 and nuclear migration of RelB/p52. Silencing by a specific siRNA of NIK, the upstream kinase of the non-canonical NFκB pathway, prevented CCL21 upregulation but did not modulate CCL19 or RANTES expression in response to TWEAK, thus establishing CCL21 as a non-canonical NFκB target in podocytes. Increased kidney Fn14 and CCL21 expression was also observed in rat proteinuric kidney disease induced by puromycin, and was localized to podocytes. In conclusion, TWEAK activates the non-canonical NFκB pathway in podocytes, leading to upregulation of CCL21 expression. The non-canonical NFκB pathway should be explored as a potential therapeutic target in proteinuric kidney disease.


Asunto(s)
Quimiocina CCL21/biosíntesis , FN-kappa B/metabolismo , Podocitos/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Quimiocina CCL21/genética , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Citocina TWEAK/farmacología , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Procesamiento Proteico-Postraduccional , Proteinuria/tratamiento farmacológico , Ratas Endogámicas WKY , Insuficiencia Renal Crónica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA