Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1260600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842312

RESUMEN

Invertebrates lack hypothalamic-pituitary-gonadal axis, and have acquired species-specific regulatory systems for ovarian follicle development. Ascidians are marine invertebrates that are the phylogenetically closest living relatives to vertebrates, and we have thus far substantiated the molecular mechanisms underlying neuropeptidergic follicle development of the cosmopolitan species, Ciona intestinalis Type A. However, no ovarian factor has so far been identified in Ciona. In the present study, we identified a novel Ciona-specific peptide, termed PEP51, in the ovary. Immunohistochemical analysis demonstrated the specific expression of PEP51 in oocyte-associated accessory cells, test cells, of post-vitellogenic (stage III) follicles. Immunoelectron microscopy revealed that PEP51 was localized in the cytosol of test cells in early stage III follicles, which lack secretory granules. These results indicate that PEP51 acts as an intracellular factor within test cells rather than as a secretory peptide. Confocal laser microscopy verified that activation of caspase-3/7, the canonical apoptosis marker, was detected in most PEP51-positive test cells of early stage III. This colocalization of PEP51 and the apoptosis marker was consistent with immunoelectron microscopy observations demonstrating that a few normal (PEP51-negative) test cells reside in the aggregates of PEP51-positive apoptotic test cells of early stage III follicles. Furthermore, transfection of the PEP51 gene into COS-7 cells and HEK293MSR cells resulted in activation of caspase-3/7, providing evidence that PEP51 induces apoptotic signaling. Collectively, these results showed the existence of species-specific ovarian peptide-driven cell metabolism in Ciona follicle development. Consistent with the phylogenetic position of Ciona as the closest sister group of vertebrates, the present study sheds new light on the molecular and functional diversity of the regulatory systems of follicle development in the Chordata.


Asunto(s)
Ciona intestinalis , Animales , Femenino , Ciona intestinalis/genética , Filogenia , Caspasa 3/genética , Aminoácidos/metabolismo , Péptidos/metabolismo , Folículo Ovárico , Vertebrados
2.
Sci Rep ; 11(1): 20111, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635691

RESUMEN

The larval skeleton of the echinoderm is believed to have been acquired through co-option of a pre-existing gene regulatory network (GRN); that is, the mechanism for adult skeleton formation in the echinoderm was deployed in early embryogenesis during echinoderm diversification. To explore the evolutionary changes that occurred during co-option, we examined the mechanism for adult skeletogenesis using the starfish Patiria pectinifera. Expression patterns of skeletogenesis-related genes (vegf, vegfr, ets1/2, erg, alx1, ca1, and clect) suggest that adult skeletogenic cells develop from the posterior coelom after the start of feeding. Treatment with inhibitors and gene knockout using transcription activator-like effector nucleases (TALENs) suggest that the feeding-nutrient sensing pathway activates Vegf signaling via target of rapamycin (TOR) activity, leading to the activation of skeletogenic regulatory genes in starfish. In the larval skeletogenesis of sea urchins, the homeobox gene pmar1 activates skeletogenic regulatory genes, but in starfish, localized expression of the pmar1-related genes phbA and phbB was not detected during the adult skeleton formation stage. Based on these data, we provide a model for the adult skeletogenic GRN in the echinoderm and propose that the upstream regulatory system changed from the feeding-TOR-Vegf pathway to a homeobox gene-system during co-option of the skeletogenic GRN.


Asunto(s)
Huesos/citología , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Larva/citología , Estrellas de Mar/crecimiento & desarrollo , Animales , Huesos/metabolismo , Embrión no Mamífero/metabolismo , Evolución Molecular , Larva/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Estrellas de Mar/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Curr Biol ; 30(8): 1555-1561.e4, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32220316

RESUMEN

Metamorphosis, a widespread life history strategy in metazoans, allows dispersal and use of different ecological niches through a dramatic body change from a larval stage [1, 2]. Despite its conservation and importance, the molecular mechanisms underlying its initiation and progression have been characterized in only a few animal models. In this study, through pharmacological and gene functional analyses, we identified neurotransmitters responsible for metamorphosis of the ascidian Ciona. Ciona metamorphosis converts swimming tadpole larvae into vase-like, sessile adults. Here, we show that the neurotransmitter GABA is a key regulator of metamorphosis. We found that gonadotropin-releasing hormone (GnRH) is a downstream neuropeptide of GABA. Although GABA is generally thought of as an inhibitory neurotransmitter, we found that it positively regulates secretion of GnRH through the metabotropic GABA receptor during Ciona metamorphosis. GnRH is necessary for reproductive maturation in vertebrates, and GABA is an important excitatory regulator of GnRH in the hypothalamus during puberty [3, 4]. Our findings reveal another role of the GABA-GnRH axis in the regulation of post-embryonic development in chordates.


Asunto(s)
Ciona/fisiología , Hormona Liberadora de Gonadotropina/genética , Metamorfosis Biológica/genética , Ácido gamma-Aminobutírico/metabolismo , Animales , Secuencia de Bases , Ciona/genética , Ciona/crecimiento & desarrollo , Hormona Liberadora de Gonadotropina/química , Hormona Liberadora de Gonadotropina/metabolismo
4.
Dev Biol ; 458(1): 120-131, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682808

RESUMEN

Species-specific traits are thought to have been acquired by natural selection. Transcription factors play central roles in the evolution of species-specific traits. Hox genes encode a set of conserved transcription factors essential for establishing the anterior-posterior body axis of animals. Changes in the expression or function of Hox genes can lead to the diversification of animal-body plans. The tunicate ascidian Ciona intestinalis Type A has an orange-colored structure at the sperm duct terminus. This orange-pigmented organ (OPO) is the characteristic that can distinguish this ascidian from other closely related species. The OPO is formed by the accumulation of orange-pigmented cells (OPCs) that are present throughout the adult body. We show that Hox13 is essential for formation of the OPO. Hox13 is expressed in the epithelium of the sperm duct and neurons surrounding the terminal openings for sperm ejection, while OPCs themselves do not express this gene. OPCs are mobile cells that can move through the body vasculature by pseudopodia, suggesting that the OPO is formed by the accumulation of OPCs guided by Hox13-positive cells. Another ascidian species, Ciona savignyi, does not have an OPO. Like Hox13 of C. intestinalis, Hox13 of C. savignyi is expressed at the terminus of its sperm duct; however, its expression domain is limited to the circular area around the openings. The genetic changes responsible for the acquisition or loss of OPO are likely to occur in the expression pattern of Hox13.


Asunto(s)
Ciona intestinalis/genética , Regulación del Desarrollo de la Expresión Génica , Genitales Masculinos/crecimiento & desarrollo , Órganos de los Sentidos/crecimiento & desarrollo , Animales , Ciona/genética , Ciona/crecimiento & desarrollo , Ciona intestinalis/crecimiento & desarrollo , Células Epiteliales/metabolismo , Genes Homeobox , Genitales Masculinos/citología , Masculino , Modelos Biológicos , Neuronas/metabolismo , Pigmentos Biológicos , Especificidad de la Especie
5.
Dev Dyn ; 243(12): 1524-35, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25130398

RESUMEN

BACKGROUND: Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. RESULTS: We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. CONCLUSIONS: This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs.


Asunto(s)
Ciona intestinalis/embriología , Hormona Liberadora de Gonadotropina/metabolismo , Metamorfosis Biológica/fisiología , Animales , Puntos de Control del Ciclo Celular/fisiología , AMP Cíclico/metabolismo , Larva/metabolismo
6.
Zoolog Sci ; 27(11): 842-50, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21039122

RESUMEN

The adult of the ascidian Ciona intestinalis has cupular organs, i.e., putative hydrodynamic sensors, at the atrial epithelium. The cupular organ consists of support cells and sensory neurons, and it extends a gelatinous matrix, known as a cupula, toward the atrial cavity. These characteristics are shared with sensory hair cells in the vertebrate inner ear and lateral line neuromasts in fish and amphibians, which suggests an evolutionary link between the cupular organ and these vertebrate hydrodynamic sensors. In the present study, we have isolated and investigated two transposon-mediated enhancer detection lines that showed GFP expression in support cells of the cupular organs. Using the enhancer detection lines and neuron marker transgenic lines, we describe the position, morphology, and development of the cupular organs. Cupular organs were found at the atrial epithelium, but not in the branchial epithelium. We found that cupular organs are also present along the dorsal fold and the gonoducts. The cells lining the pre-atrial opening in juveniles are presumably precursor cells of the cupular organ. To our knowledge, the present study is the first precise description of the ascidian cupular organ, providing evidence that may help to resolve discrepancies among previous studies on the organ.


Asunto(s)
Ciona intestinalis/crecimiento & desarrollo , Ciona intestinalis/fisiología , Elementos Transponibles de ADN/fisiología , Órganos de los Sentidos/crecimiento & desarrollo , Órganos de los Sentidos/fisiología , Animales , Ciona intestinalis/anatomía & histología , Ciona intestinalis/genética , Elementos Transponibles de ADN/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes , Organismos Modificados Genéticamente , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA