Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Pediatr Res ; 4(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33073262

RESUMEN

BACKGROUND: Prenatal Alcohol Exposure (PAE) impacts 2% to 5% of infants born in the United States yearly. Women who consume alcohol during pregnancy have a five-fold increased rate of Chorioamnionitis (CHORIO). Both PAE and CHORIO cause microstructural injury to multiple brain regions including major white matter tracts. OBJECTIVE: Utilizing two previously established animal models, we hypothesized that the combination of PAE+CHORIO would result in greater deficits in myelination and structural integrity than PAE alone. MATERIAL AND METHODS: Pregnant Long-Evans rats voluntarily drank 5% ethanol or saccharin until Gestational Day 19 (GD). On GD19, CHORIO was induced in one group of PAE dams by a 30 min uterine artery occlusion and injection of Lipopolysaccharide (LPS) into each amniotic sac. The remaining PAE dams and saccharin controls underwent sham surgery. Pups were born on GD22 and weaned on Postnatal Day 24 (PD). On PD28, offspring were sacrificed, and their brains examined using ex-vivo Diffusion Tensor Imaging (DTI). RESULTS: Compared to control, PAE alone did not affect offspring birth weights, mortality or any DTI measures. In contrast, PAE+CHORIO significantly reduced offspring survival and, in surviving pups, increased Radial Diffusivity (RD) in medial frontal cortex and decreased Fractional Anisotropy (FA) in medial and ventral frontal cortex and within capsular regions. CONCLUSION: The combination of moderate PAE+CHORIO results in an increased mortality, concomitant with diffuse microstructural brain injury noted in young adolescent offspring at PD28. Future studies should examine the extent to which PAE exacerbates the damage caused by CHORIO alone and whether these deficits persist into adulthood.

2.
Brain Behav Immun ; 87: 339-358, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31918004

RESUMEN

Previous reports show that moderate prenatal alcohol exposure (PAE) poses a risk factor for developing neuropathic pain following adult-onset peripheral nerve injury in male rats. Recently, evidence suggests that immune-related mechanisms underlying neuropathic pain in females are different compared to males despite the fact that both sexes develop neuropathy of similar magnitude and duration following chronic constriction injury (CCI) of the sciatic nerve. Data suggest that the actions of peripheral T cells play a greater role in mediating neuropathy in females. The goal of the current study is to identify specificity of immune cell and cytokine changes between PAE and non-PAE neuropathic females by utilizing a well-characterized rodent model of sciatic nerve damage, in an effort to unmask unique signatures of immune-related factors underlying the risk of neuropathy from PAE. Cytokines typically associated with myeloid cell actions such as interleukin (IL)-1ß, tumor necrosis factor (TNF), IL-6, IL-4 and IL-10 as well as the neutrophil chemoattractant CXCL1, are examined. In addition, transcription factors and cytokines associated with various differentiated T cell subtypes are examined (anti-inflammatory FOXP3, proinflammatory IL-17A, IL-21, ROR-γt, interferon (IFN)-γ and T-bet). Lymphocyte function associated antigen 1 (LFA-1) is an adhesion molecule expressed on peripheral immune cells including T cells, and regulates T cell activation and extravasation into inflamed tissue regions. A potential therapeutic approach was explored with the goal of controlling proinflammatory responses in neuroanatomical regions critical for CCI-induced allodynia by blocking LFA-1 actions using BIRT377. The data show profound development of hindpaw allodynia in adult non-PAE control females following standard CCI, but not following minor CCI, while minor CCI generated allodynia in PAE females. The data also show substantial increases in T cell-associated proinflammatory cytokine mRNA and proteins, along with evidence of augmented myeloid/glial activation (mRNA) and induction of myeloid/glial-related proinflammatory cytokines, CCL2, IL-1ß and TNF in discrete regions along the pain pathway (damaged sciatic nerve, dorsal root ganglia; DRG, and spinal cord). Interestingly, the characteristic anti-inflammatory IL-10 protein response to nerve damage is blunted in neuropathic PAE females. Moreover, T cell profiles are predominantly proinflammatory in neuropathic Sac and PAE females, augmented levels of Th17-specific proinflammatory cytokines IL-17A and IL-21, as well as the Th1-specific factor, T-bet, are observed. Similarly, the expression of RORγt, a critical transcription factor for Th17 cells, is detected in the spinal cord of neuropathic females. Blocking peripheral LFA-1 actions with intravenous (i.v.) BIRT377 reverses allodynia in Sac and PAE rats, dampens myeloid (IL-1ß, TNF, CXCL1)- and T cell-associated proinflammatory factors (IL-17A and RORγt) and spinal glial activation. Moreover, i.v. BIRT377 treatment reverses the blunted IL-10 response to CCI observed only in neuropathic PAE rats and elevates FOXP3 in pain-reversed Sac rats. Unexpectedly, intrathecal BIRT377 treatment is unable to alter allodynia in either Sac or PAE neuropathic females. Together, these data provide evidence that: 1) fully differentiated proinflammatory Th17 cells recruited at the sciatic nerve, DRGs and lumbar spinal cord may interact with the local environment to shape the immune responses underlying neuropathy in female rats, and, 2) PAE primes peripheral and spinal immune responses in adult females. PAE is a risk factor in females for developing peripheral neuropathy after minor nerve injury.


Asunto(s)
Neuralgia , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Hiperalgesia , Antígeno-1 Asociado a Función de Linfocito , Masculino , Embarazo , Ratas , Médula Espinal
3.
Brain Behav Immun ; 61: 80-95, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28011263

RESUMEN

A growing body of evidence indicates that prenatal alcohol exposure (PAE) may predispose individuals to secondary medical disabilities later in life. Animal models of PAE reveal neuroimmune sequelae such as elevated brain astrocyte and microglial activation with corresponding region-specific changes in immune signaling molecules such as cytokines and chemokines. The aim of this study was to evaluate the effects of moderate PAE on the development and maintenance of allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in adult male rat offspring. Because CCI allodynia requires the actions of glial cytokines, we analyzed lumbar spinal cord glial and immune cell surface markers indicative of their activation levels, as well as sciatic nerve and dorsal root ganglia (DRG) cytokines in PAE offspring in adulthood. While PAE did not alter basal sensory thresholds before or after sham manipulations, PAE significantly potentiated adult onset and maintenance of allodynia. Microscopic analysis revealed exaggerated astrocyte and microglial activation, while flow cytometry data demonstrated increased proportions of immune cells with cell surface major histocompatibility complex II (MHCII) and ß-integrin adhesion molecules, which are indicative of PAE-induced immune cell activation. Sciatic nerves from CCI rats revealed that PAE potentiated the proinflammatory cytokines interleukin (IL)-1ß, IL-6 and tumor necrosis factor-alpha (TNFα) protein levels with a simultaneous robust suppression of the anti-inflammatory cytokine, IL-10. A profound reduction in IL-10 expression in the DRG of PAE neuropathic rats was also observed. Taken together, our results provide novel insights into the vulnerability that PAE produces for adult-onset central nervous system (CNS) pathological conditions from peripheral nerve injury.


Asunto(s)
Citocinas/metabolismo , Etanol/administración & dosificación , Ganglios Espinales/metabolismo , Microglía/metabolismo , Neuralgia/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Nervio Ciático/metabolismo , Animales , Astrocitos/metabolismo , Femenino , Ganglios Espinales/fisiopatología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Neuralgia/fisiopatología , Dimensión del Dolor , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Long-Evans , Nervio Ciático/fisiopatología , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
4.
Alcohol Clin Exp Res ; 38(4): 1078-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24511895

RESUMEN

BACKGROUND: Accurate identification of prenatal alcohol exposure (PAE) in the newborn period offers an opportunity for early identification of children at risk of future neurocognitive problems and the implementation of interventional approaches earlier in life. PAE newborn screening by measuring phosphatidylethanol in dried blood spot (PEth-DBS) cards is feasible, logistically easier, and more cost-efficient compared with other biomarkers. However, the sensitivity and specificity of this method have yet to be established. METHODS: This prospective cohort study examined validity of PEth-DBS among 28 infants with PAE and 32 controls relative to maternal self-report and other biomarkers. Pregnant women were recruited from a University of New Mexico clinic and followed to early postpartum period. The composite index, which was based on self-reported measures of alcohol use and allowed to classify subjects into PAE and control groups, was the criterion measure used to estimate sensitivity and specificity of PEth-DBS. RESULTS: The study included large proportions of patients representing ethnic minorities (7.4% American Indian, 81.7% Hispanic/Latina), low education (54.2%

Asunto(s)
Consumo de Bebidas Alcohólicas/sangre , Pruebas con Sangre Seca/normas , Glicerofosfolípidos/sangre , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Adulto , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Embarazo , Estudios Prospectivos , Adulto Joven
5.
Behav Brain Res ; 214(1): 66-74, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-20570698

RESUMEN

Recent findings from our laboratory indicate that alterations in frontal cortex function, structural plasticity, and related social behaviors are persistent consequences of exposure to moderate levels of ethanol during prenatal brain development [24]. Fetal-ethanol-related reductions in the expression of the immediate early genes (IEGs) c-fos and Arc and alterations in dendritic spine density in ventrolateral and medial aspects of frontal cortex suggest a dissociation reminiscent of that described by Kolb et al. [38] in which these aspects of frontal cortex undergo reciprocal experience-dependent changes. In addition to providing a brief review of the available data on social behavior and frontal cortex function in fetal-ethanol-exposed rats, the present paper presents novel data on social-experience-related IEG expression in four regions of frontal cortex (Zilles LO, VLO, Fr1, Fr2) that are evaluated alongside our prior data from AID and Cg3. Social experience in normal rats was related to a distinct pattern of IEG expression in ventrolateral and medial aspects of frontal cortex, with generally greater expression observed in ventrolateral frontal cortex. In contrast, weaker expression was observed in all aspects of frontal cortex in ethanol-exposed rats, with the exception of an experience-related increase in the medial agranular cortex. Behaviors related to social investigation and wrestling/boxing were differentially correlated with patterns of activity-related IEG expression in the regions under investigation for saccharin- and ethanol-exposed rats. These observations suggest that recruitment and expression of IEGs in frontal cortex following social experience are potentially important for understanding the long-term consequences of moderate prenatal ethanol exposure on frontal cortex function, synaptic plasticity, and related behaviors.


Asunto(s)
Corteza Cerebral/embriología , Etanol/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/fisiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Sacarina/farmacología , Conducta Social , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Proteínas del Citoesqueleto/metabolismo , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas
6.
Neurotoxicology ; 29(4): 647-55, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18573533

RESUMEN

Arsenic is one of the most common heavy metal contaminants found in the environment, particularly in water. We examined the impact of perinatal exposure to relatively low levels of arsenic (50 parts per billion, ppb) on neuroendocrine markers associated with depression and depressive-like behaviors in affected adult C57BL/6J mouse offspring. Whereas most biomedical research on arsenic has focused on its carcinogenic potential, a few studies suggest that arsenic can adversely affect brain development and neural function. Compared to controls, offspring exposed to 50 parts per billion arsenic during the perinatal period had significantly elevated serum corticosterone levels, reduced whole hippocampal CRFR 1 protein level and elevated dorsal hippocampal serotonin 5HT 1A receptor binding and receptor-effector coupling. 5HT 1A receptor binding and receptor-effector coupling were not different in the ventral hippocampal formation, entorhinal or parietal cortices, or inferior colliculus. Perinatal arsenic exposure also significantly increased learned helplessness and measures of immobility in a forced swim task. Taken together, these results suggest that perinatal arsenic exposure may disrupt the regulatory interactions between the hypothalamic-pituitary-adrenal axis and the serotonergic system in the dorsal hippocampal formation in a manner that predisposes affected offspring to depressive-like behavior. These results are the first to demonstrate that relatively low levels of arsenic exposure during development can have long-lasting adverse effects on behavior and neurobiological markers associated with these behavioral changes.


Asunto(s)
Arsénico/toxicidad , Conducta Animal/efectos de los fármacos , Corticosterona/sangre , Depresión , Efectos Tardíos de la Exposición Prenatal , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Depresión/inducido químicamente , Depresión/patología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Femenino , Desamparo Adquirido , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Unión Proteica/efectos de los fármacos , Receptor de Serotonina 5-HT1A/metabolismo , Natación , Triglicéridos/metabolismo , Tritio/metabolismo , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA