Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neuroinflammation ; 17(1): 264, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32891154

RESUMEN

BACKGROUND: Maternal nutrition is critical for proper fetal development. While increased nutrient intake is essential during pregnancy, an excessive consumption of certain nutrients, like fat, can lead to long-lasting detrimental consequences on the offspring. Animal work investigating the consequences of maternal high-fat diet (mHFD) revealed in the offspring a maternal immune activation (MIA) phenotype associated with increased inflammatory signals. This inflammation was proposed as one of the mechanisms causing neuronal circuit dysfunction, notably in the hippocampus, by altering the brain-resident macrophages-microglia. However, the understanding of mechanisms linking inflammation and microglial activities to pathological brain development remains limited. We hypothesized that mHFD-induced inflammation could prime microglia by altering their specific gene expression signature, population density, and/or functions. METHODS: We used an integrative approach combining molecular (i.e., multiplex-ELISA, rt-qPCR) and cellular (i.e., histochemistry, electron microscopy) techniques to investigate the effects of mHFD (saturated and unsaturated fats) vs control diet on inflammatory priming, as well as microglial transcriptomic signature, density, distribution, morphology, and ultrastructure in mice. These analyses were performed on the mothers and/or their adolescent offspring at postnatal day 30. RESULTS: Our study revealed that mHFD results in MIA defined by increased circulating levels of interleukin (IL)-6 in the mothers. This phenotype was associated with an exacerbated inflammatory response to peripheral lipopolysaccharide in mHFD-exposed offspring of both sexes. Microglial morphology was also altered, and there were increased microglial interactions with astrocytes in the hippocampus CA1 of mHFD-exposed male offspring, as well as decreased microglia-associated extracellular space pockets in the same region of mHFD-exposed offspring of the two sexes. A decreased mRNA expression of the inflammatory-regulating cytokine Tgfb1 and microglial receptors Tmem119, Trem2, and Cx3cr1 was additionally measured in the hippocampus of mHFD-exposed offspring, especially in males. CONCLUSIONS: Here, we described how dietary habits during pregnancy and nurturing, particularly the consumption of an enriched fat diet, can influence peripheral immune priming in the offspring. We also found that microglia are affected in terms of gene expression signature, morphology, and interactions with the hippocampal parenchyma, in a partially sexually dimorphic manner, which may contribute to the adverse neurodevelopmental outcomes on the offspring.


Asunto(s)
Dieta Alta en Grasa , Hipocampo/patología , Inflamación/patología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Microglía/patología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Adolescente , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Forma de la Célula/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/sangre , Lipopolisacáridos/farmacología , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Embarazo , Receptores Inmunológicos/metabolismo , Factores Sexuales , Factor de Crecimiento Transformador beta1/metabolismo
2.
PLoS Biol ; 14(5): e1002466, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27228556

RESUMEN

Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.


Asunto(s)
Adenosina Trifosfato/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Microglía/patología , Neuronas/metabolismo , Fagocitosis/fisiología , Adulto , Animales , Apoptosis/fisiología , Receptor 1 de Quimiocinas CX3C , Humanos , Ácido Kaínico/toxicidad , Antígenos Comunes de Leucocito/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Monocitos/patología , Neuronas/patología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
3.
J Neurosci ; 35(16): 6532-43, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904803

RESUMEN

Alzheimer's disease (AD) is characterized by a robust inflammatory response elicited by the accumulation and subsequent deposition of amyloid (Aß) within the brain. The brain's immune cells migrate to and invest their processes within Aß plaques but are unable to efficiently phagocytose and clear plaques from the brain. Previous studies have shown that treatment of myeloid cells with nuclear receptor agonists increases expression of phagocytosis-related genes. In this study, we elucidate a novel mechanism by which nuclear receptors act to enhance phagocytosis in the AD brain. Treatment of murine models of AD with agonists of the nuclear receptors PPARγ, PPARδ, LXR, and RXR stimulated microglial phagocytosis in vitro and rapidly induced the expression of the phagocytic receptors Axl and MerTK. In murine models of AD, we found that plaque-associated macrophages expressed Axl and MerTK and treatment of the cells with an RXR agonist further induced their expression, coincident with the rapid reduction in plaque burden. Further characterization of MerTK(+)/Axl(+) macrophages revealed that they also expressed the phagocytic receptor TREM2 and high levels of CD45, consistent with a peripheral origin of these cells. Importantly, in an ex vivo slice assay, nuclear receptor agonist treatment reversed the AD-related suppression of phagocytosis through a MerTK-dependent mechanism. Thus, nuclear receptor agonists increase MerTK and Axl expression on plaque-associated immune cells, consequently licensing their phagocytic activity and promoting plaque clearance.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Fagocitosis/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Benzoatos/farmacología , Bencilaminas/farmacología , Bexaroteno , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Antígenos Comunes de Leucocito/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Células Mieloides/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Pioglitazona , Placa Amiloide/metabolismo , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Receptores Citoplasmáticos y Nucleares/agonistas , Tetrahidronaftalenos/farmacología , Tiazoles/farmacología , Tiazolidinedionas/farmacología , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor Axl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA