Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chemistry ; 23(37): 8857-8870, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28272755

RESUMEN

The TNU-9 zeolite (TUN framework) is one of the most complex zeolites known. It represents a highly promising matrix for both acid and redox catalytic reactions. We present here a newly developed approach involving the use of 29 Si and 27 Al (3Q) MAS NMR spectroscopy, CoII as probes monitored by UV/Vis and FTIR spectroscopy, and extensive periodic DFT calculations, including molecular dynamics, to investigating the aluminum distribution in the TUN framework and the location of aluminum pairs and divalent cations in extra-framework cationic positions. Our study reveals that 40 and 60 % of aluminum atoms in the TNU-9 zeolite are isolated single aluminum atoms and aluminum pairs, respectively. The aluminum pairs are present in two types of six-membered rings forming the corresponding α and ß (15 and 85 %, respectively, of aluminum pairs) sites of bare divalent cations. The α site is located on the TUN straight channel wall and it connects two channel intersections. The suggested near-planar ß site is present at the channel intersection.

2.
Angew Chem Int Ed Engl ; 54(2): 541-5, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25393612

RESUMEN

Zeolites are highly important heterogeneous catalysts. Besides Brønsted SiOHAl acid sites, also framework AlFR Lewis acid sites are often found in their H-forms. The formation of AlFR Lewis sites in zeolites is a key issue regarding their selectivity in acid-catalyzed reactions. The local structures of AlFR Lewis sites in dehydrated zeolites and their precursors--"perturbed" AlFR atoms in hydrated zeolites--were studied by high-resolution MAS NMR and FTIR spectroscopy and DFT/MM calculations. Perturbed framework Al atoms correspond to (SiO)3AlOH groups and are characterized by a broad (27)Al NMR resonance (δi = 59-62 ppm, CQ = 5 MHz, and η = 0.3-0.4) with a shoulder at 40 ppm in the (27)Al MAS NMR spectrum. Dehydroxylation of (SiO)3AlOH occurs at mild temperatures and leads to the formation of AlFR Lewis sites tricoordinated to the zeolite framework. Al atoms of these (SiO)3Al Lewis sites exhibit an extremely broad (27)Al NMR resonance (δi ≈ 67 ppm, CQ ≈ 20 MHz, and η ≈ 0.1).

3.
J Phys Chem A ; 112(31): 7162-9, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18636696

RESUMEN

Large-scale plasma was created in gas mixtures containing carbon monoxide by high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures used corresponded to a cometary and/or meteoritic impact into the Earth's early atmosphere. A multiple-centimeter-sized fireball was created by focusing a single 85 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates that formed in various stages of the LIDB plasma chemical evolution were investigated by optical emission spectroscopy (OES) with temporal resolution. Special attention was paid to any OES signs of molecular ions. However, carbon monoxide cations were registered only if their production was enhanced by Penning ionization, i.e., excess He was added to the CO. The chemical consequences of laser-produced plasma generation in a CO-N 2-H 2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas chromatography (GC). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. H 2 (18)O was used to avoid possible contamination. The large laser spark triggered more complex reactivity originating in carbon monoxide than expected, when taking into account the strong triple bond of carbon monoxide causing typically inefficient dissociation of this molecule in electrical discharges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA