Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Genome Res ; 33(8): 1340-1353, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37652668

RESUMEN

Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma , Humanos , Dosificación de Gen , Mutación , Saccharomyces cerevisiae/genética , Aneuploidia
2.
Nat Genet ; 55(8): 1390-1399, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37524789

RESUMEN

Pangenomes provide access to an accurate representation of the genetic diversity of species, both in terms of sequence polymorphisms and structural variants (SVs). Here we generated the Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising reference-quality genomes for 142 strains representing the species' phylogenetic and ecological diversity. The ScRAP includes phased haplotype assemblies for several heterozygous diploid and polyploid isolates. We identified circa (ca.) 4,800 nonredundant SVs that provide a broad view of the genomic diversity, including the dynamics of telomere length and transposable elements. We uncovered frequent cases of complex aneuploidies where large chromosomes underwent large deletions and translocations. We found that SVs can impact gene expression near the breakpoints and substantially contribute to gene repertoire evolution. We also discovered that horizontally acquired regions insert at chromosome ends and can generate new telomeres. Overall, the ScRAP demonstrates the benefit of a pangenome in understanding genome evolution at population scale.


Asunto(s)
Genoma , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Filogenia , Genómica , Telómero/genética
3.
G3 (Bethesda) ; 13(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37226280

RESUMEN

Gene expression variation can provide an overview of the changes in regulatory networks that underlie phenotypic diversity. Certain evolutionary trajectories such as polyploidization events can have an impact on the transcriptional landscape. Interestingly, the evolution of the yeast species Brettanomyces bruxellensis has been punctuated by diverse allopolyploidization events leading to the coexistence of a primary diploid genome associated with various haploid acquired genomes. To assess the impact of these events on gene expression, we generated and compared the transcriptomes of a set of 87 B. bruxellensis isolates, selected as being representative of the genomic diversity of this species. Our analysis revealed that acquired subgenomes strongly impact the transcriptional patterns and allow discrimination of allopolyploid populations. In addition, clear transcriptional signatures related to specific populations have been revealed. The transcriptional variations observed are related to some specific biological processes such as transmembrane transport and amino acids metabolism. Moreover, we also found that the acquired subgenome causes the overexpression of some genes involved in the production of flavor-impacting secondary metabolites, especially in isolates of the beer population.


Asunto(s)
Brettanomyces , Brettanomyces/genética , Brettanomyces/metabolismo , Genoma , Genómica
4.
Mol Ecol ; 32(10): 2374-2395, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35318747

RESUMEN

Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g., winemaking, bioethanol production) or as a beneficial microorganism (e.g., production of specific beers, kombucha). In addition to its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the coexistence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g., nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.


Asunto(s)
Brettanomyces , Vino , Humanos , Saccharomyces cerevisiae , Vino/análisis , Brettanomyces/genética , Brettanomyces/metabolismo , Genómica , Fermentación
5.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36205042

RESUMEN

The appearance of genomic variations such as loss of heterozygosity (LOH) has a significant impact on phenotypic diversity observed in a population. Recent large-scale yeast population genomic surveys have shown a high frequency of these events in natural isolates and more particularly in polyploids. However, the frequency, extent, and spectrum of LOH in polyploid organisms have never been explored and are poorly characterized to date. Here, we accumulated 5,163 LOH events over 1,875 generations in 76 mutation accumulation (MA) lines comprising nine natural heterozygous diploid, triploid, and tetraploid natural S. cerevisiae isolates from different ecological and geographical origins. We found that the rate and spectrum of LOH are variable across ploidy levels. Of the total accumulated LOH events, 8.5%, 21%, and 70.5% of them were found in diploid, triploid, and tetraploid MA lines, respectively. Our results clearly show that the frequency of generated LOH events increases with ploidy level. In fact, the cumulative LOH rates were estimated to be 9.3 × 10-3, 2.2 × 10-2, and 8.4 × 10-2 events per division for diploids, triploids, and tetraploids, respectively. In addition, a clear bias toward the accumulation of interstitial and short LOH tracts is observed in triploids and tetraploids compared with diploids. The variation of the frequency and spectrum of LOH events across ploidy level could be related to the genomic instability, characterizing higher ploidy isolates.


Asunto(s)
Saccharomyces cerevisiae , Tetraploidía , Saccharomyces cerevisiae/genética , Triploidía , Ploidias , Pérdida de Heterocigocidad
6.
Genomics ; 114(3): 110369, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483655

RESUMEN

Phasing, and in particular polyploid phasing, have been challenging problems held back by the limited read length of high-throughput short read sequencing methods which can't overcome the distance between heterozygous sites and labor high cost of alternative methods such as the physical separation of chromosomes for example. Recently developed single molecule long-read sequencing methods provide much longer reads which overcome this previous limitation. Here we review the alignment-based methods of polyploid phasing that rely on four main strategies: population inference methods, which leverage the genetic information of several individuals to phase a sample; objective function minimization methods, which minimize a function such as the Minimum Error Correction (MEC); graph partitioning methods, which represent the read data as a graph and split it into k haplotype subgraphs; cluster building methods, which iteratively grow clusters of similar reads into a final set of clusters that represent the haplotypes. We discuss the advantages and limitations of these methods and the metrics used to assess their performance, proposing that accuracy and contiguity are the most meaningful metrics. Finally, we propose the field of alignment-based polyploid phasing would greatly benefit from the use of a well-designed benchmarking dataset with appropriate evaluation metrics. We consider that there are still significant improvements which can be achieved to obtain more accurate and contiguous polyploid phasing results which reflect the complexity of polyploid genome architectures.


Asunto(s)
Algoritmos , Genoma Humano , Humanos , Análisis de Secuencia de ADN/métodos , Haplotipos , Poliploidía , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
7.
Curr Biol ; 32(6): 1350-1361.e3, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35180385

RESUMEN

Yeasts, and in particular Saccharomyces cerevisiae, have been used for brewing beer for thousands of years. Population genomic surveys highlighted that beer yeasts are polyphyletic, with the emergence of different domesticated subpopulations characterized by high genetic diversity and ploidy level. However, the different origins of these subpopulations are still unclear as reconstruction of polyploid genomes is required. To gain better insight into the differential evolutionary trajectories, we sequenced the genomes of 35 Saccharomyces cerevisiae isolates coming from different beer-brewing clades, using a long-read sequencing strategy. By phasing the genomes and using a windowed approach, we identified three main beer subpopulations based on allelic content (European dominant, Asian dominant, and African beer). They were derived from different admixtures between populations and are characterized by distinctive genomic patterns. By comparing the fully phased genes, the most diverse in our dataset are enriched for functions relevant to the brewing environment such as carbon metabolism, oxidoreduction, and cell wall organization activity. Finally, independent domestication, evolution, and adaptation events across subpopulations were also highlighted by investigating specific genes previously linked to the brewing process. Altogether, our analysis based on phased polyploid genomes has led to new insight into the contrasting evolutionary history of beer isolates.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Cerveza , Fermentación , Poliploidía , Saccharomyces/genética , Saccharomyces cerevisiae/genética
8.
Genome Res ; 31(12): 2316-2326, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815309

RESUMEN

Polyploidization events are observed across the tree of life and occur in many fungi, plant, and animal species. During evolution, polyploidy is thought to be an important source of speciation and tumorigenesis. However, the origin of polyploid populations is not always clear, and little is known about the precise nature and structure of their complex genome. Using a long-read sequencing strategy, we sequenced 71 strains from the Brettanomyces bruxellensis yeast species, which is found in anthropized environments (e.g., beer, contaminant of wine, kombucha, and ethanol production) and characterized by several polyploid subpopulations. To reconstruct the polyploid genomes, we phased them by using different strategies and found that each subpopulation had a unique polyploidization history with distinct trajectories. The polyploid genomes contain either genetically closely related (with a genetic divergence <1%) or diverged copies (>3%), indicating auto- as well as allopolyploidization events. These latest events have occurred independently with a specific and unique donor in each of the polyploid subpopulations and exclude the known Brettanomyces sister species as possible donors. Finally, loss of heterozygosity events has shaped the structure of these polyploid genomes and underline their dynamics. Overall, our study highlights the multiplicity of the trajectories leading to polyploid genomes within the same species.

9.
Genome Biol ; 22(1): 126, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926549

RESUMEN

While genome sequencing and assembly are now routine, we do not have a full, precise picture of polyploid genomes. No existing polyploid phasing method provides accurate and contiguous haplotype predictions. We developed nPhase, a ploidy agnostic tool that leverages long reads and accurate short reads to solve alignment-based phasing for samples of unspecified ploidy ( https://github.com/OmarOakheart/nPhase ). nPhase is validated by tests on simulated and real polyploids. nPhase obtains on average over 95% accuracy and a contiguous 1.25 haplotigs per haplotype to cover more than 90% of each chromosome (heterozygosity rate ≥ 0.5%). nPhase allows population genomics and hybrid studies of polyploids.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Poliploidía , Programas Informáticos , Algoritmos , Biología Computacional/normas , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Flujo de Trabajo
10.
Sci Signal ; 12(597)2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481524

RESUMEN

Anti-cancer strategies that target the glycolytic metabolism of tumors have been proposed. The glucose analog 2-deoxyglucose (2DG) is imported into cells and, after phosphorylation, becomes 2DG-6-phosphate, a toxic by-product that inhibits glycolysis. Using yeast as a model, we performed an unbiased mass spectrometry-based approach to probe the cellular effects of 2DG on the proteome and study resistance mechanisms to 2DG. We found that two phosphatases that target 2DG-6-phosphate were induced upon exposure to 2DG and participated in 2DG detoxification. Dog1 and Dog2 are HAD (haloacid dehalogenase)-like phosphatases, which are evolutionarily conserved. 2DG induced Dog2 by activating several signaling pathways, such as the stress response pathway mediated by the p38 MAPK ortholog Hog1, the unfolded protein response (UPR) triggered by 2DG-induced ER stress, and the cell wall integrity (CWI) pathway mediated by the MAPK Slt2. Loss of the UPR or CWI pathways led to 2DG hypersensitivity. In contrast, mutants impaired in the glucose-mediated repression of genes were 2DG resistant because glucose availability transcriptionally repressed DOG2 by inhibiting signaling mediated by the AMPK ortholog Snf1. The characterization and genome resequencing of spontaneous 2DG-resistant mutants revealed that DOG2 overexpression was a common strategy underlying 2DG resistance. The human Dog2 homolog HDHD1 displayed phosphatase activity toward 2DG-6-phosphate in vitro and its overexpression conferred 2DG resistance in HeLa cells, suggesting that this 2DG phosphatase could interfere with 2DG-based chemotherapies. These results show that HAD-like phosphatases are evolutionarily conserved regulators of 2DG resistance.


Asunto(s)
Desoxiglucosa/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Antimetabolitos/metabolismo , Antimetabolitos/farmacología , Desoxiglucosa/metabolismo , Farmacorresistencia Fúngica/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Glucosa/metabolismo , Glucosa/farmacología , Células HeLa , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Monoéster Fosfórico Hidrolasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética
11.
Genetics ; 210(4): 1253-1266, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30348651

RESUMEN

Laboratory baker's yeast strains bearing an incompatible combination of MLH1 and PMS1 mismatch repair alleles are mutators that can adapt more rapidly to stress, but do so at the cost of long-term fitness. We identified 18 baker's yeast isolates from 1011 surveyed that contain the incompatible MLH1-PMS1 genotype in a heterozygous state. Surprisingly, the incompatible combination from two human clinical heterozygous diploid isolates, YJS5845 and YJS5885, contain the exact MLH1 (S288c-derived) and PMS1 (SK1-derived) open reading frames originally shown to confer incompatibility. While these isolates were nonmutators, their meiotic spore clone progeny displayed mutation rates in a DNA slippage assay that varied over a 340-fold range. This range was 30-fold higher than observed between compatible and incompatible combinations of laboratory strains. Genotyping analysis indicated that MLH1-PMS1 incompatibility was the major driver of mutation rate in the isolates. The variation in the mutation rate of incompatible spore clones could be due to background suppressors and enhancers, as well as aneuploidy seen in the spore clones. Our data are consistent with the observed variance in mutation rate contributing to adaptation to stress conditions (e.g., in a human host) through the acquisition of beneficial mutations, with high mutation rates leading to long-term fitness costs that are buffered by mating or eliminated through natural selection.


Asunto(s)
Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/genética , Proteínas de Saccharomyces cerevisiae/genética , Selección Genética/genética , Esporas Fúngicas/genética , Alelos , Reparación de la Incompatibilidad de ADN/genética , Reparación del ADN/genética , Genotipo , Humanos , Mutación , Tasa de Mutación , Saccharomyces cerevisiae/genética , Esporas Fúngicas/crecimiento & desarrollo
12.
PLoS Genet ; 13(8): e1006917, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28763437

RESUMEN

Meiotic recombination is a major factor of genome evolution, deeply characterized in only a few model species, notably the yeast Saccharomyces cerevisiae. Consequently, little is known about variations of its properties across species. In this respect, we explored the recombination landscape of Lachancea kluyveri, a protoploid yeast species that diverged from the Saccharomyces genus more than 100 million years ago and we found striking differences with S. cerevisiae. These variations include a lower recombination rate, a higher frequency of chromosomes segregating without any crossover and the absence of recombination on the chromosome arm containing the sex locus. In addition, although well conserved within the Saccharomyces clade, the S. cerevisiae recombination hotspots are not conserved over a broader evolutionary distance. Finally and strikingly, we found evidence of frequent reversal of commitment to meiosis, resulting in return to mitotic growth after allele shuffling. Identification of this major but underestimated evolutionary phenomenon illustrates the relevance of exploring non-model species.


Asunto(s)
Genoma Fúngico , Recombinación Homóloga , Meiosis/genética , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Evolución Molecular , Mitosis/genética , Filogenia , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/clasificación , Análisis de Secuencia de ADN
13.
Genetics ; 205(4): 1459-1471, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28193730

RESUMEN

An elevated mutation rate can provide cells with a source of mutations to adapt to changing environments. We identified a negative epistatic interaction involving naturally occurring variants in the MLH1 and PMS1 mismatch repair (MMR) genes of Saccharomyces cerevisiae We hypothesized that this MMR incompatibility, created through mating between divergent S. cerevisiae, yields mutator progeny that can rapidly but transiently adapt to an environmental stress. Here we analyzed the MLH1 and PMS1 genes across 1010 S. cerevisiae natural isolates spanning a wide range of ecological sources (tree exudates, Drosophila, fruits, and various fermentation and clinical isolates) and geographical sources (Europe, America, Africa, and Asia). We identified one homozygous clinical isolate and 18 heterozygous isolates containing the incompatible MMR genotype. The MLH1-PMS1 gene combination isolated from the homozygous clinical isolate conferred a mutator phenotype when expressed in the S288c laboratory background. Using a novel reporter to measure mutation rates, we showed that the overall mutation rate in the homozygous incompatible background was similar to that seen in compatible strains, indicating the presence of suppressor mutations in the clinical isolate that lowered its mutation rate. This observation and the identification of 18 heterozygous isolates, which can lead to MMR incompatible genotypes in the offspring, are consistent with an elevated mutation rate rapidly but transiently facilitating adaptation. To avoid long-term fitness costs, the incompatibility is apparently buffered by mating or by acquiring suppressors. These observations highlight effective strategies in eukaryotes to avoid long-term fitness costs associated with elevated mutation rates.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Saccharomyces cerevisiae/genética , Evolución Molecular , Antecedentes Genéticos , Aptitud Genética , Homocigoto , Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/genética , Tasa de Mutación , Fenotipo , Proteínas de Saccharomyces cerevisiae/genética
14.
G3 (Bethesda) ; 2(2): 299-311, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22384408

RESUMEN

Polyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages. In this article, we show that an osmotolerant yeast species, Pichia sorbitophila, recently isolated in a concentrated sorbitol solution in industry, illustrates this last situation. Its genome is a mosaic of homologous and homeologous chromosomes, or parts thereof, that corresponds to a recently formed hybrid in the process of evolution. The respective parental contributions to this genome were characterized using existing variations in GC content. The genomic changes that occurred during the short period since hybrid formation were identified (e.g., loss of heterozygosity, unilateral loss of rDNA, reciprocal exchange) and distinguished from those undergone by the two parental genomes after separation from their common ancestor (i.e., NUMT (NUclear sequences of MiTochondrial origin) insertions, gene acquisitions, gene location movements, reciprocal translocation). We found that the physiological characteristics of this new yeast species are determined by specific but unequal contributions of its two parents, one of which could be identified as very closely related to an extant Pichia farinosa strain.

15.
BMC Genomics ; 12: 331, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21711526

RESUMEN

BACKGROUND: Gross chromosomal rearrangements (GCRs) such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model for cancer cells have been carried out in the haploid context. To obtain new insights on the role of ploidy, the cellular effects of GCRs were compared between the haploid and diploid contexts. RESULTS: A total number of 21 haploid and diploid S. cerevisiae strains carrying various types of GCRs (aneuploidies, nonreciprocal translocations, segmental duplications and deletions) were studied with a view to determining the effects of ploidy on the cellular responses. Differences in colony and cell morphology as well as in the growth rates were observed between mutant and parental strains. These results suggest that cells are impaired physiologically in both contexts. We also investigated the variation in genomic expression in all the mutants. We observed that gene expression was significantly altered. The data obtained here clearly show that genes involved in energy metabolism, especially in the tricarboxylic acid cycle, are up-regulated in all these mutants. However, the genes involved in the composition of the ribosome or in RNA processing are down-regulated in diploids but up-regulated in haploids. Over-expression of genes involved in the regulation of the proteasome was found to occur only in haploid mutants. CONCLUSION: The present comparisons between the cellular responses of strains carrying GCRs in different ploidy contexts bring to light two main findings. First, GCRs induce a general stress response in all studied mutants, regardless of their ploidy. Secondly, the ploidy context plays a crucial role in maintaining the stoichiometric balance of the proteins: the translation rates decrease in diploid strains, whereas the excess protein synthesized is degraded in haploids by proteasome activity.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Fúngicos/genética , Ploidias , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Adenosina Trifosfato/biosíntesis , Diploidia , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Regulación hacia Arriba
16.
Curr Genet ; 56(6): 507-15, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20830585

RESUMEN

Yeasts of the Pichia genus have been isolated from different natural environments. Phylogenies based on multigene sequence analysis have shown that the genus is polyphyletic. Some species of this genus are member of the CTG group. In order to have a better insight into the relationship among species assigned to the yeast genera Pichia into the CTG group, we first sequenced the mitochondrial genome of the osmotolerant yeast Pichia farinosa. We then compared this genome with mitochondrial genomes of yeasts of the CTG group. The P. farinosa mitochondrial DNA is a circular-mapping genome of 32,065 bp, which contains 43 genes transcribed from both strands. It contains a complete set of tRNAs, the small and the large rRNAs, as well as 14 protein-coding genes. Yeasts of the CTG group contain the same core of mitochondrial genes. Phylogenetic analysis based on mitochondrial sequences clearly shows that the CTG group is divided into two distinct clades: the first one contains diploid Candida species, whereas the second mainly contains haploid Pichia species. Moreover, this analysis provides clear evidence that Pichia farinosa and Pichia sorbitophila, which were known to be unique species, are two distinct species.


Asunto(s)
ADN Mitocondrial/análisis , Genoma Mitocondrial/genética , Pichia/genética , Secuencia de Aminoácidos , Orden Génico , Código Genético , Especiación Genética , Genoma Fúngico , Inteínas/genética , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA