Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phys Med Biol ; 68(12)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37220766

RESUMEN

Objective.The range uncertainty in proton radiotherapy is a limiting factor to achieve optimum dose conformity to the tumour volume. Ionoacoustics is a promising approach forin siturange verification, which would allow to reduce the size of the irradiated volume relative to the tumour volume. The energy deposition of a pulsed proton beam leads to an acoustic pressure wave (ionoacoustics), the detection of which allows conclusion about the distance between the Bragg peak and the acoustic detector. This information can be transferred into a co-registered ultrasound image, marking the Bragg peak position relative to the surrounding anatomy.Approach.A CIRS 3D abdominal phantom was irradiated with 126 MeV protons at a clinical proton therapy centre. Acoustic signals were recorded on the beam axis distal to the Bragg peak with a Cetacean C305X hydrophone. The ionoacoustic measurements were processed with a correlation filter using simulated filter templates. The hydrophone was rigidly attached to an ultrasound device (Interson GP-C01) recording ultrasound images of the irradiated region.Main results.The time of flight obtained from ionoacoustic measurements were transferred to an ultrasound image by means of an optoacoustic calibration measurement. The Bragg peak position was marked in the ultrasound image with a statistical uncertainty ofσ= 0.5 mm of 24 individual measurements depositing 1.2 Gy at the Bragg peak. The difference between the evaluated Bragg peak position and the one obtained from irradiation planning (1.0 mm) is smaller than the typical range uncertainty (≈4 mm) at the given penetration depth (10 cm).Significance.The measurements show that it is possible to determine the Bragg peak position of a clinical proton beam with submillimetre precision and transfer the information to an ultrasound image of the irradiated region. The dose required for this is smaller than that used for a typical irradiation fraction.


Asunto(s)
Terapia de Protones , Protones , Terapia de Protones/métodos , Acústica , Sonido , Fantasmas de Imagen , Dosificación Radioterapéutica , Método de Montecarlo
2.
Front Oncol ; 12: 925542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408153

RESUMEN

Purpose: The Bragg peak located at the end of the ion beam range is one of the main advantages of ion beam therapy compared to X-Ray radiotherapy. However, verifying the exact position of the Bragg peak within the patient online is a major challenge. The goal of this work was to achieve submillimeter proton beam range verification for pulsed proton beams of an energy of up to 220 MeV using ionoacoustics for a clinically relevant dose deposition of typically 2 Gy per fraction by i) using optimal proton beam characteristics for ionoacoustic signal generation and ii) improved signal detection by correlating the signal with simulated filter templates. Methods: A water tank was irradiated with a preclinical 20 MeV proton beam using different pulse durations ranging from 50 ns up to 1 µs in order to maximise the signal-to-noise ratio (SNR) of ionoacoustic signals. The ionoacoustic signals were measured using a piezo-electric ultrasound transducer in the MHz frequency range. The signals were filtered using a cross correlation-based signal processing algorithm utilizing simulated templates, which enhances the SNR of the recorded signals. The range of the protons is evaluated by extracting the time of flight (ToF) of the ionoacoustic signals and compared to simulations from a Monte Carlo dose engine (FLUKA). Results: Optimised SNR of 28.0 ± 10.6 is obtained at a beam current of 4.5 µA and a pulse duration of 130 ns at a total peak dose deposition of 0.5 Gy. Evaluated ranges coincide with Monte Carlo simulations better than 0.1 mm at an absolute range of 4.21 mm. Higher beam energies require longer proton pulse durations for optimised signal generation. Using the correlation-based post-processing filter a SNR of 17.8 ± 5.5 is obtained for 220 MeV protons at a total peak dose deposition of 1.3 Gy. For this clinically relevant dose deposition and proton beam energy, submillimeter range verification was achieved at an absolute range of 303 mm in water. Conclusion: Optimal proton pulse durations ensure an ideal trade-off between maximising the ionoacoustic amplitude and minimising dose deposition. In combination with a correlation-based post-processing evaluation algorithm, a reasonable SNR can be achieved at low dose levels putting clinical applications for online proton or ion beam range verification into reach.

3.
Int J Radiat Oncol Biol Phys ; 109(1): 76-83, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32805301

RESUMEN

PURPOSE: Proton minibeam radiation therapy, a spatial fractionation concept, widens the therapeutic window. By reducing normal tissue toxicities, it allows a temporally fractionated regime with high daily doses. However, an array shift between daily fractions can affect the tissue-sparing effect by decreasing the total peak-to-valley dose ratio. Therefore, combining temporal fractions with spatial fractionation raises questions about the impact of daily applied dose modulations, reirradiation accuracies, and total dose modulations. METHODS AND MATERIALS: Healthy mouse ear pinnae were irradiated with 4 daily fractions of 30 Gy mean dose, applying proton pencil minibeams (pMB) of Gaussian σ = 222 µm in 3 different schemes: a 16 pMB array with a center-to-center distance of 1.8 mm irradiated the same position in all sessions (FS1) or was shifted by 0.9 mm to never hit the previously irradiated tissue in each session (FS2), or a 64 pMB array with a center-to-center distance of 0.9 mm irradiated the same position in all sessions (FS3), resulting in the same total dose distribution as FS2. Reirradiation positioning and its accuracy were obtained from image guidance using the unique vessel structure of ears. Acute toxicities (swelling, erythema, and desquamation) were evaluated for 153 days after the first fraction. Late toxicities (fibrous tissue, inflammation) were analyzed on day 153. RESULTS: Reirradiation of highly dose-modulated arrays at a positioning accuracy of 110 ± 52 µm induced the least severe acute and late toxicities. A shift of the same array in FS2 led to significantly inducted acute toxicities, a higher otitis score, and a slight increase in fibrous tissue. FS3 led to the strongest increase in acute and late toxicities. CONCLUSIONS: The highest normal-tissue sparing is achieved after accurate reirradiation of a highly dose modulated pMB array, although high positioning accuracies are challenging in a clinical environment. Nevertheless, the same integral dose applied in highly dose-modulated fractions is superior to low daily dose-modulated fractions.


Asunto(s)
Terapia de Protones/efectos adversos , Análisis Espacio-Temporal , Animales , Relación Dosis-Respuesta en la Radiación , Oído/efectos de la radiación , Ratones
4.
Cancers (Basel) ; 11(5)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130616

RESUMEN

The use of different scoring systems for radiation-induced toxicity limits comparability between studies. We examined dose-dependent tissue alterations following hypofractionated X-ray irradiation and evaluated their use as scoring criteria. Four dose fractions (0, 5, 10, 20, 30 Gy/fraction) were applied daily to ear pinnae. Acute effects (ear thickness, erythema, desquamation) were monitored for 92 days after fraction 1. Late effects (chronic inflammation, fibrosis) and the presence of transforming growth factor beta 1 (TGFß1)-expressing cells were quantified on day 92. The maximum ear thickness displayed a significant positive correlation with fractional dose. Increased ear thickness and erythema occurred simultaneously, followed by desquamation from day 10 onwards. A significant dose-dependency was observed for the severity of erythema, but not for desquamation. After 4 × 20 and 4 × 30 Gy, inflammation was significantly increased on day 92, whereas fibrosis and the abundance of TGFß1-expressing cells were only marginally increased after 4 × 30 Gy. Ear thickness significantly correlated with the severity of inflammation and fibrosis on day 92, but not with the number of TGFß1-expressing cells. Fibrosis correlated significantly with inflammation and fractional dose. In conclusion, the parameter of ear thickness can be used as an objective, numerical and dose-dependent quantification criterion to characterize the severity of acute toxicity and allow for the prediction of late effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA