Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Oncol ; 12: 998907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483038

RESUMEN

A search in the GDC Data Portal revealed 304 documented somatic mutations of the KCNJ3 gene in primary tumors (out of 10.202 cases). Most affected tumor types were carcinomas from uterus, skin and lung, while breast cancer exerted the lowest number of somatic mutations. We focused our research on 15 missense mutations within the region between TM1 and TM2, comprising the pore helix and ion selectivity signature. Expression was measured by confocal laser scan microscopy of eGFP tagged GIRK1 subunits, expressed with and without GIRK4 in oocytes of Xenopus laevis. GIRK ion currents were activated via coexpressed m2Rs and measured by the Two Electrode Voltage Clamp technique. Magnitude of the total GIRK current, as well as the fraction of current inducible by the agonist, were measured. Ion selectivity was gauged by assessment of the PNa+/PK+ ratio, calculated by the GIRK current reversal potential in extracellular media at different Na+ and K+ concentrations. None of the tested mutations was able to form functional GIRK1 homooligomeric ion channels. One of the mutations, G145A, which locates directly to the ion selectivity signature, exerted an increased PNa+/PK+ ratio. Generally, the missense mutations studied can be categorized into three groups: (i) normal/reduced expression accompanied by reduced/absent function (S132Y, F136L, E139K, G145A, R149Q, R149P, G178D, S185Y, Q186R), (ii) normal/increased expression as well as increased function (E140M, A142T, M184I) and (iii) miniscule expression but increased function relative to expression levels (I151N, G158S). We conclude, that gain of function mutations, identical or similar to categories (ii) and (iii), may potentially be involved in genesis and progression of malignancies in tissues that exert a high rate of occurrence of somatic mutations of KCNJ3.

2.
PLoS Comput Biol ; 17(6): e1009091, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34157016

RESUMEN

Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Canales Iónicos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Modelos Biológicos , Células A549 , Ciclo Celular , Puntos de Control del Ciclo Celular , Proliferación Celular , Biología Computacional , Simulación por Computador , Humanos , Transporte Iónico , Cadenas de Markov , Potenciales de la Membrana , Técnicas de Placa-Clamp
3.
PLoS Biol ; 18(4): e3000700, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32330125

RESUMEN

Trimeric intracellular cation (TRIC) channels have been proposed to modulate Ca2+ release from the endoplasmic reticulum (ER) and determine oscillatory Ca2+ signals. Here, we report that TRIC-A-mediated amplitude and frequency modulation of ryanodine receptor 2 (RyR2)-mediated Ca2+ oscillations and inositol 1,4,5-triphosphate receptor (IP3R)-induced cytosolic signals is based on attenuating store-operated Ca2+ entry (SOCE). Further, TRIC-A-dependent delay in ER Ca2+ store refilling contributes to shaping the pattern of Ca2+ oscillations. Upon ER Ca2+ depletion, TRIC-A clusters with stromal interaction molecule 1 (STIM1) and Ca2+-release-activated Ca2+ channel 1 (Orai1) within ER-plasma membrane (PM) junctions and impairs assembly of the STIM1/Orai1 complex, causing a decrease in Orai1-mediated Ca2+ current and SOCE. Together, our findings demonstrate that TRIC-A is a negative regulator of STIM1/Orai1 function. Thus, aberrant SOCE could contribute to muscle disorders associated with loss of TRIC-A.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Técnicas de Placa-Clamp , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Molécula de Interacción Estromal 1/genética
4.
Sci Rep ; 9(1): 19277, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848385

RESUMEN

Excessive expression of subunit 1 of GIRK1 in ER+ breast tumors is associated with reduced survival times and increased lymph node metastasis in patients. To investigate possible tumor-initiating properties, benign MCF10A and malign MCF7 mammary epithelial cells were engineered to overexpress GIRK1 neoplasia associated vital parameters and resting potentials were measured and compared to controls. The presence of GIRK1 resulted in resting potentials negative to the controls. Upon GIRK1 overexpression, several cellular pathways were regulated towards pro-tumorigenic action as revealed by comparison of transcriptomes of MCF10AGIRK1 with the control (MCF10AeGFP). According to transcriptome analysis, cellular migration was promoted while wound healing and extracellular matrix interactions were impaired. Vital parameters in MCF7 cells were affected akin the benign MCF10A lines, but to a lesser extent. Thus, GIRK1 regulated cellular pathways in mammary epithelial cells are likely to contribute to the development and progression of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Neoplasias/genética , Neoplasias de la Mama/patología , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Metástasis Linfática , Células MCF-7 , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Neoplasias/patología , Transcriptoma/genética
5.
Biochem Pharmacol ; 145: 64-80, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859968

RESUMEN

Saxagliptin treatment has been associated with increased rate of hospitalization for heart failure in type 2 diabetic patients, though the underlying mechanism(s) remain elusive. To address this, we assessed the effects of saxagliptin on human atrial trabeculae, guinea pig hearts and cardiomyocytes. We found that the primary target of saxagliptin, dipeptidyl peptidase-4, is absent in cardiomyocytes, yet saxagliptin internalized into cardiomyocytes and impaired cardiac contractility via inhibition of the Ca2+/calmodulin-dependent protein kinase II-phospholamban-sarcoplasmic reticulum Ca2+-ATPase 2a axis and Na+-Ca2+ exchanger function in Ca2+ extrusion. This resulted in reduced sarcoplasmic reticulum Ca2+ content, diastolic Ca2+ overload, systolic dysfunction and impaired contractile force. Furthermore, saxagliptin reduced protein kinase C-mediated delayed rectifier K+ current that prolonged action potential duration and consequently QTc interval. Importantly, saxagliptin aggravated pre-existing cardiac dysfunction induced by ischemia/reperfusion injury. In conclusion, our novel results provide mechanisms for the off-target deleterious effects of saxagliptin on cardiac function and support the outcome of SAVOR-TIMI 53 trial that linked saxagliptin with the risk of heart failure.


Asunto(s)
Adamantano/análogos & derivados , Dipéptidos/toxicidad , Dipeptidil Peptidasa 4/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Atrios Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Adamantano/toxicidad , Anciano , Animales , Línea Celular , Dipeptidil Peptidasa 4/genética , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Cardiopatías/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA