Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Respir Res ; 24(1): 248, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845700

RESUMEN

BACKGROUND: Microbiome dysbiosis can have long-lasting effects on our health and induce the development of various diseases. Bronchopulmonary dysplasia (BPD) is a multifactorial disease with pre- and postnatal origins including intra-amniotic infection as main risk factor. Recently, postnatal pathologic lung microbiota colonization was associated with BPD. The objectives of this prospective observational cohort study were to describe differences in bacterial signatures in the amniotic fluid (AF) of intact pregnancies without clinical signs or risk of preterm delivery and AF samples obtained during preterm deliveries and their variations between different BPD disease severity stages. METHODS: AF samples were collected under sterile conditions during fetal intervention from intact pregnancies (n = 17) or immediately before preterm delivery < 32 weeks (n = 126). Metabarcoding based approaches were used for the molecular assessment of bacterial 16S rRNA genes to describe bacterial community structure. RESULTS: The absolute amount of 16S rRNA genes was significantly increased in AF of preterm deliveries and detailed profiling revealed a reduced alpha diversity and a significant change in beta diversity with a reduced relative abundance of 16S rRNA genes indicative for Lactobacillus and Acetobacter while Fusobacterium, Pseudomonas, Ureaplasma and Staphylococcus 16S rRNA gene prevailed. Although classification of BPD by disease severity revealed equivalent absolute 16S rRNA gene abundance and alpha and beta diversity in no, mild and moderate/severe BPD groups, for some 16S rRNA genes differences were observed in AF samples. Bacterial signatures of infants with moderate/severe BPD showed predominance of 16S rRNA genes belonging to the Escherichia-Shigella cluster while Ureaplasma and Enterococcus species were enriched in AF samples of infants with mild BPD. CONCLUSIONS: Our study identified distinct and diverse intrauterine 16S rRNA gene patterns in preterm infants immediately before birth, differing from the 16S rRNA gene signature of intact pregnancies. The distinct 16S rRNA gene signatures at birth derive from bacteria with varying pathogenicity to the immature lung and are suited to identify preterm infants at risk. Our results emphasize the prenatal impact to the origins of BPD.


Asunto(s)
Displasia Broncopulmonar , Nacimiento Prematuro , Lactante , Embarazo , Femenino , Recién Nacido , Humanos , Nacimiento Prematuro/diagnóstico , Recien Nacido Prematuro , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/genética , Líquido Amniótico , ARN Ribosómico 16S/genética , Estudios Prospectivos , Bacterias/genética
2.
Microbiome ; 11(1): 162, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496039

RESUMEN

BACKGROUND: Darier's disease (DD) is a genodermatosis caused by mutations of the ATP2A2 gene leading to disrupted keratinocyte adhesion. Recurrent episodes of skin inflammation and infections with a typical malodour in DD indicate a role for microbial dysbiosis. Here, for the first time, we investigated the DD skin microbiome using a metabarcoding approach of 115 skin swabs from 14 patients and 14 healthy volunteers. Furthermore, we analyzed its changes in the context of DD malodour and the cutaneous DD transcriptome. RESULTS: We identified a disease-specific cutaneous microbiome with a loss of microbial diversity and of potentially beneficial commensals. Expansion of inflammation-associated microbes such as Staphylococcus aureus and Staphylococcus warneri strongly correlated with disease severity. DD dysbiosis was further characterized by abundant species belonging to Corynebacteria, Staphylococci and Streptococci groups displaying strong associations with malodour intensity. Transcriptome analyses showed marked upregulation of epidermal repair, inflammatory and immune defence pathways reflecting epithelial and immune response mechanisms to DD dysbiotic microbiome. In contrast, barrier genes including claudin-4 and cadherin-4 were downregulated. CONCLUSIONS: These findings allow a better understanding of Darier exacerbations, highlighting the role of cutaneous dysbiosis in DD inflammation and associated malodour. Our data also suggest potential biomarkers and targets of intervention for DD. Video Abstract.


Asunto(s)
Enfermedad de Darier , Humanos , Enfermedad de Darier/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Disbiosis , Piel , Inflamación
3.
Arch Microbiol ; 204(8): 505, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35857201

RESUMEN

The Gram-positive strain R79T, isolated from the rhizosphere of young M26 apple rootstocks, was investigated by a polyphasic taxonomic approach. Phylogenetic identification based on the full-length 16S rRNA gene sequence revealed highest 16S rRNA gene sequence similarity to the type strains of Rhodococcus wratislaviensis (99.6%) and Rhodococcus opacus (99.2%) followed by Rhodococcus imtechensis (98.9%). All other 16S rRNA gene sequence similarities were below 98.65%. A phylogenomic tree calculated based on a whole-genome sequence also showed a distinct clustering with the type strain of Rhodococcus koreensis. Average nucleotide identity (ANI) values between whole-genome sequences of R79T and the closest related type strains were below 95% supported the novel species status. The DNA G + C content of R79T was 67.24% mol. Predominant fatty acids were C16:0, C15:0 and C17:1ω8c. The strain contained MK8-H2 as the major respiratory quinone. The polar lipid profile consists of diphosphatidylglycerol and phosphatidylethanolamine, as well as of some unidentified lipids. The peptidoglycan type of the strain is A1γ meso-diaminopimelic acid. Based on the obtained genotypic and phenotypic, including chemotaxonomic data, we conclude that R79T represents a novel species of the genus Rhodococcus, for which the name Rhodococcus pseudokoreensis sp. nov. is proposed. The type strain is R79T (= DSM 113102T = LMG 32444T = CCM 9183T).


Asunto(s)
Malus , Rhodococcus , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos , Malus/genética , Hibridación de Ácido Nucleico , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN , Microbiología del Suelo
4.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36861375

RESUMEN

Three strains (H4-D09T, S2-D11 and S9-F39) of a member of the genus Paracoccus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09T exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09T included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate-formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase (mxaFI) and methylamine dehydrogenase (mau) genes. Apart from dissimilatory denitrification genes (narA, nirS, norBC and nosZ), genes for assimilatory nitrate (nasA) and nitrite reductases (nirBD) were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus Paracoccus. Core genome phylogeny of the type strain H4-D09T indicated that Paracoccus thiocyanatus and Paracoccus denitrificans are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are C18 : 1ω7c, C19 : 0cyclo ω7c, and C16 : 0, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus Paracoccus, for which the name Paracoccus methylovorus sp. nov. (type strain H4-D09T=LMG 31941T= DSM 111585T) is proposed.


Asunto(s)
Desnitrificación , Paracoccus , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Genómica , Paracoccus/genética , Formaldehído
5.
Thorax ; 77(2): 191-195, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34389656

RESUMEN

To examine the role of smoking on the bacterial community composition of the upper and the lower respiratory tract, a monocentric, controlled prospective study was performed, including healthy smokers, ex-smokers and never-smokers. Smokers were further grouped according to their smoking history. Bacterial diversity was analysed using a molecular barcoding approach based on directly extracted DNA. Our study shows for the first time distinct bacterial response patterns in the upper and lower respiratory tract to cigarette smoking leading to a higher abundance of opportunistic pathogens. The clinical significance of these dysbioses for health needs to be further explored.


Asunto(s)
Microbiota , Humo , Humanos , Pulmón , Estudios Prospectivos , Fumar/efectos adversos
6.
Nat Commun ; 11(1): 4322, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859898

RESUMEN

Gut microbial and metabolite alterations have been linked to the pathogenesis of inflammatory bowel diseases. Here we perform a multi-omics microbiome and metabolite analysis of a longitudinal cohort of Crohn's disease patients undergoing autologous hematopoietic stem cell transplantation, and investigational therapy that induces drug free remission in a subset of patients. Via comparison of patients who responded and maintained remission, responded but experienced disease relapse and patients who did not respond to therapy, we identify shared functional signatures that correlate with disease activity despite the variability of gut microbiota profiles at taxonomic level. These signatures reflect the disease state when transferred to gnotobiotic mice. Taken together, the integration of microbiome and metabolite profiles from human cohort and mice improves the predictive modelling of disease outcome, and allows the identification of a network of bacteria-metabolite interactions involving sulfur metabolism as a key mechanism linked to disease activity in Crohn's disease.


Asunto(s)
Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/microbiología , Microbioma Gastrointestinal/fisiología , Azufre/metabolismo , Adolescente , Adulto , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Interleucina-10/genética , Masculino , Metagenoma , Ratones , Ratones Noqueados , ARN Ribosómico 16S/genética , Inducción de Remisión , Adulto Joven
7.
J Clin Med ; 9(7)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679682

RESUMEN

Bronchopulmonary dysplasia (BPD) is a multifactorial disease mainly provoked by pre- and postnatal infections, mechanical ventilation, and oxygen toxicity. In severely affected premature infants requiring mechanical ventilation, association of bacterial colonization of the lung and BPD was recently disclosed. To analyze the impact of bacterial colonization of the upper airway and gastrointestinal tract on moderate/severe BPD, we retrospectively analyzed nasopharyngeal and anal swabs taken weekly during the first 6 weeks of life at a single center in n = 102 preterm infants <1000 g. Colonization mostly occurred between weeks 2 and 6 and displayed a high diversity requiring categorization. Analyses of deviance considering all relevant confounders revealed statistical significance solely for upper airway colonization with bacteria with pathogenic potential and moderate/severe BPD (p = 0.0043) while no link could be established to the Gram response or the gastrointestinal tract. Our data highlight that specific colonization of the upper airway poses a risk to the immature lung. These data are not surprising taking into account the tremendous impact of microbial axes on health and disease across ages. We suggest that studies on upper airway colonization using predefined categories represent a feasible approach to investigate the impact on the pulmonary outcome in ventilated and non-ventilated preterm infants.

8.
Sci Rep ; 9(1): 12675, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481742

RESUMEN

While the association between early life determinants and the development of the gut microbiome composition in infancy has been widely investigated, a potential persistent influence of early life determinants on the gut microbial community after its stabilization at later childhood remains largely unknown. Therefore, we aimed to identify the association between several early life determinants and the gut microbiome composition in six-year-old children from the LISA birth cohort. A total number of 166 fecal samples were analyzed using 16S rRNA gene-based barcoding to assess bacterial diversity pattern. The bacterial profiles were investigated for their association with maternal smoking during pregnancy, mode of delivery, breastfeeding, antibiotic treatment between one and two years of age, gender and socioeconomic status (SES). While alpha and beta diversity of the infants' gut microbiome remained unaffected, amplicon sequence variants (ASVs) annotated to Firmicutes and Actinobacteria responded to early life determinants, mostly to feeding practice and antibiotics use. ASVs associated to Bacteriodetes remained unaffected. Our findings indicate that early life determinants could have a long-term sustainable effect on the gut microflora of six-year-old children, however, associations with early life determinates are weaker than reported for infants.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Adulto , Antibacterianos/farmacología , Bacterias/genética , Lactancia Materna , Niño , Heces/microbiología , Femenino , Firmicutes/genética , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Embarazo , Análisis de Componente Principal , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Factores Sexuales , Fumar , Clase Social
9.
EMBO Mol Med ; 10(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29674392

RESUMEN

The development of chronic obstructive pulmonary disease (COPD) pathogenesis remains unclear, but emerging evidence supports a crucial role for inducible bronchus-associated lymphoid tissue (iBALT) in disease progression. Mechanisms underlying iBALT generation, particularly during chronic CS exposure, remain to be defined. Oxysterol metabolism of cholesterol is crucial to immune cell localization in secondary lymphoid tissue. Here, we demonstrate that oxysterols also critically regulate iBALT generation and the immune pathogenesis of COPD In both COPD patients and cigarette smoke (CS)-exposed mice, we identified significantly upregulated CH25H and CYP7B1 expression in airway epithelial cells, regulating CS-induced B-cell migration and iBALT formation. Mice deficient in CH25H or the oxysterol receptor EBI2 exhibited decreased iBALT and subsequent CS-induced emphysema. Further, inhibition of the oxysterol pathway using clotrimazole resolved iBALT formation and attenuated CS-induced emphysema in vivo therapeutically. Collectively, our studies are the first to mechanistically interrogate oxysterol-dependent iBALT formation in the pathogenesis of COPD, and identify a novel therapeutic target for the treatment of COPD and potentially other diseases driven by the generation of tertiary lymphoid organs.


Asunto(s)
Linfocitos B/metabolismo , Colesterol/metabolismo , Tejido Linfoide/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adulto , Anciano , Animales , Bronquios/patología , Células Cultivadas , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Tejido Linfoide/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/genética , Humo , Nicotiana/química
10.
PLoS One ; 12(12): e0188556, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29211803

RESUMEN

We explored the assembly of intestinal microbiota in healthy male participants during the randomized crossover design of run-in (5 day) and experimental phases (21-day normoxic bed rest (NBR), hypoxic bed rest (HBR) and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, with balanced fluid and dietary intakes, controlled circadian rhythm, microbial ambiental burden and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4000 m simulated altitude), respectively. A number of parameters linked to intestinal environment such as defecation frequency, intestinal electrical conductivity (IEC), sterol and polyphenol content and diversity, indole, aromaticity and spectral characteristics of dissolved organic matter (DOM) were measured (64 variables). The structure and diversity of bacterial microbial community was assessed using 16S rRNA amplicon sequencing. Inactivity negatively affected frequency of defecation and in combination with hypoxia increased IEC (p < 0.05). In contrast, sterol and polyphenol diversity and content, various characteristics of DOM and aromatic compounds, the structure and diversity of bacterial microbial community were not significantly affected over time. A new in-house PlanHab database was established to integrate all measured variables on host physiology, diet, experiment, immune and metabolic markers (n = 231). The observed progressive decrease in defecation frequency and concomitant increase in IEC suggested that the transition from healthy physiological state towards the developed symptoms of low magnitude obesity-related syndromes was dose dependent on the extent of time spent in inactivity and preceded or took place in absence of significant rearrangements in bacterial microbial community. Species B. thetaiotamicron, B. fragilis, B. dorei and other Bacteroides with reported relevance for dysbiotic medical conditions were significantly enriched in HBR, characterized with most severe inflammation symptoms, indicating a shift towards host mucin degradation and proinflammatory immune crosstalk.


Asunto(s)
Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Hipoxia/metabolismo , Bacterias/genética , Cromatografía Líquida de Alta Presión , Estudios Cruzados , Ejercicio Físico , Heces/química , Voluntarios Sanos , Humanos , Masculino , Proyectos Piloto , ARN Ribosómico 16S/genética
12.
Nanomaterials (Basel) ; 7(10)2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28961222

RESUMEN

The growing use of silver nanoparticles (Ag-NPs) in consumer products raises concerns about their toxicological potential. The purpose of the study was to investigate the size- and coating-dependent pulmonary toxicity of Ag-NPs in vitro and in vivo, using an ovalbumin (OVA)-mouse allergy model. Supernatants from (5.6-45 µg/mL) Ag50-PVP, Ag200-PVP or Ag50-citrate-treated NR8383 alveolar macrophages were tested for lactate dehydrogenase and glucuronidase activity, tumor necrosis factor (TNF)-α release and reactive oxygen species (ROS) production. For the in vivo study, NPs were intratracheally instilled in non-sensitized (NS) and OVA-sensitized (S) mice (1-50 µg/mouse) prior to OVA-challenge and bronchoalveolar lavage fluid (BALF) inflammatory infiltrate was evaluated five days after challenge. In vitro results showed a dose-dependent cytotoxicity of Ag-NPs, which was highest for Ag50-polyvinilpyrrolidone (PVP), followed by Ag50-citrate, and lowest for Ag200-PVP. In vivo 10-50 µg Ag50-PVP triggered a dose-dependent pulmonary inflammatory milieu in NS and S mice, which was significantly higher in S mice and was dampened upon instillation of Ag200-PVP. Surprisingly, instillation of 1 µg Ag50-PVP significantly reduced OVA-induced inflammatory infiltrate in S mice and had no adverse effect in NS mice. Ag50-citrate showed similar beneficial effects at low concentrations and attenuated pro-inflammatory effects at high concentrations. The lung microbiome was altered by NPs instillation dependent on coating and/or mouse batch, showing the most pronounced effects upon instillation of 50 µg Ag50-citrate, which caused an increased abundance of operational taxonomic units assigned to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. However, no correlation with the biphasic effect of low and high Ag-NPs dose was found. Altogether, both in vitro and in vivo data on the pulmonary effects of Ag-NPs suggest the critical role of the size, dose and surface functionalization of Ag-NPs, especially in susceptible allergic individuals. From the perspective of occupational health, care should be taken by the production of Ag-NPs-containing consumer products.

13.
Microbiome ; 5(1): 118, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28893308

RESUMEN

BACKGROUND: Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. RESULTS: Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. CONCLUSIONS: The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.


Asunto(s)
Biodegradación Ambiental , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Metagenoma , Metano/metabolismo , Microbiota , Anaerobiosis , Crecimiento Quimioautotrófico , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos/microbiología , Metagenómica/métodos , Interacciones Microbianas , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Sulfatos/metabolismo , Factores de Tiempo
14.
J Allergy Clin Immunol ; 139(5): 1525-1535, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27670239

RESUMEN

BACKGROUND: Chronic immune diseases, such as asthma, are highly prevalent. Currently available pharmaceuticals improve symptoms but cannot cure the disease. This prompted demands for alternatives to pharmaceuticals, such as probiotics, for the prevention of allergic disease. However, clinical trials have produced inconsistent results. This is at least partly explained by the highly complex crosstalk among probiotic bacteria, the host's microbiota, and immune cells. The identification of a bioactive substance from probiotic bacteria could circumvent this difficulty. OBJECTIVE: We sought to identify and characterize a bioactive probiotic metabolite for potential prevention of allergic airway disease. METHODS: Probiotic supernatants were screened for their ability to concordantly decrease the constitutive CCL17 secretion of a human Hodgkin lymphoma cell line and prevent upregulation of costimulatory molecules of LPS-stimulated human dendritic cells. RESULTS: Supernatants from 13 of 37 tested probiotic strains showed immunoactivity. Bioassay-guided chromatographic fractionation of 2 supernatants according to polarity, followed by total ion chromatography and mass spectrometry, yielded C11H12N2O2 as the molecular formula of a bioactive substance. Proton nuclear magnetic resonance and enantiomeric separation identified D-tryptophan. In contrast, L-tryptophan and 11 other D-amino acids were inactive. Feeding D-tryptophan to mice before experimental asthma induction increased numbers of lung and gut regulatory T cells, decreased lung TH2 responses, and ameliorated allergic airway inflammation and hyperresponsiveness. Allergic airway inflammation reduced gut microbial diversity, which was increased by D-tryptophan. CONCLUSIONS: D-tryptophan is a newly identified product from probiotic bacteria. Our findings support the concept that defined bacterial products can be exploited in novel preventative strategies for chronic immune diseases.


Asunto(s)
Asma/inmunología , Citocinas/inmunología , Microbioma Gastrointestinal/inmunología , Probióticos , Triptófano/biosíntesis , Animales , Bacterias/metabolismo , Línea Celular Tumoral , Células Cultivadas , Células Dendríticas , Femenino , Humanos , Lipopolisacáridos , Ratones Endogámicos BALB C
15.
PLoS One ; 11(1): e0146015, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26730711

RESUMEN

The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold.


Asunto(s)
Bacterias/crecimiento & desarrollo , Criopreservación/métodos , Microbiota/efectos de los fármacos , Leche/microbiología , Nitrógeno/farmacología , Pseudomonas/crecimiento & desarrollo , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Bovinos , Frío , Recuento de Colonia Microbiana , Microbiología de Alimentos/métodos , Variación Genética/efectos de los fármacos , Microbiota/genética , Filogenia , Pseudomonas/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
J Hazard Mater ; 187(1-3): 488-94, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21288640

RESUMEN

Ethyl tert butyl ether (ETBE) and tert amyl methyl ether (TAME) are oxygenates used in gasoline in order to reduce emissions from vehicles. The present study investigated their impact on a soil microflora that never was exposed to any contamination before. Therefore, soil was artificially contaminated and incubated over 6 weeks. Substrate induced respiration (SIR) measurements and phospholipid fatty acid (PLFA) analysis indicated shifts in both, microbial function and structure during incubation. The results showed an activation of microbial respiration in the presence of ETBE and TAME, suggesting biodegradation by the microflora. Furthermore, PLFA concentrations decreased in the presence of ETBE and TAME and Gram-positive bacteria became more dominant in the microbial community.


Asunto(s)
Éteres de Etila/toxicidad , Éteres Metílicos/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Éteres de Etila/metabolismo , Éteres Metílicos/metabolismo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA