Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(3): 4643-4651, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33463148

RESUMEN

Charge interaction-driven jamming of nanoparticle monolayers at the oil-water interface can be employed as a method to mold liquids into tailored stable 3D liquid objects. Here, 3D liquid objects are fabricated via a combination of biocompatible aqueous poly(vinyl sulfonic acid, sodium salt) solution and a colloidal dispersion of highly fluorescent organo-modified graphitic carbon nitride (g-C3N4) in edible sunflower oil. The as-formed liquid object shows stability in a broad pH range, as well as flexible pathways for efficient exchange of molecules at the liquid-liquid interphase, which allows for photodegradation of rhodamine B at the interface via visible light irradiation that also enables an encoding concept. The g-C3N4-based liquid objects point toward various applications, for example, all-liquid biphasic photocatalysis, artificial compartmentalized systems, liquid-liquid printing, or bioprinting.

2.
Nanomaterials (Basel) ; 9(5)2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31035517

RESUMEN

The self-assembly of block copolymers in aqueous solution is an important field in modern polymer science that has been extended to double hydrophilic block copolymers (DHBC) in recent years. In here, a significant improvement of the self-assembly process of DHBC in aqueous solution by utilizing a linear-brush macromolecular architecture is presented. The improved self-assembly behavior of poly(N-vinylpyrrolidone)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PVP-b-P(OEGMA)) and its concentration dependency is investigated via dynamic light scattering (DLS) (apparent hydrodynamic radii ≈ 100-120 nm). Moreover, the DHBC assemblies can be non-covalently crosslinked with tannic acid via hydrogen bonding, which leads to the formation of small aggregates as well (apparent hydrodynamic radius ≈ 15 nm). Non-covalent crosslinking improves the self-assembly and stabilizes the aggregates upon dilution, reducing the concentration dependency of aggregate self-assembly. Additionally, the non-covalent aggregates can be disassembled in basic media. The presence of aggregates was studied via cryogenic scanning electron microscopy (cryo-SEM) and DLS before and after non-covalent crosslinking. Furthermore, analytical ultracentrifugation of the formed aggregate structures was performed, clearly showing the existence of polymer assemblies, particularly after non-covalent crosslinking. In summary, we report on the completely hydrophilic self-assembled structures in solution formed from fully biocompatible building entities in water.

3.
RSC Adv ; 9(9): 4993-5001, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35514641

RESUMEN

Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via α-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for α-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking.

4.
Soft Matter ; 14(14): 2655-2664, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29561058

RESUMEN

High concentration formulations of graphitic carbon nitride (g-CN) are utilized as photoinitiator and reinforcer for hydrogels. In order to integrate significant amounts of g-CN, ethylene glycol (EG) is employed as a co-solvent for the gel formation, which enables stable dispersion of up to 4 wt% g-CN. Afterwards, EG can be removed easily via solvent exchange to afford pure hydrogels. The diverse gels possess remarkably high storage moduli (up to 650 kPa for gels and 720 kPa for hydrogels) and compression moduli (up to 9.45 MPa for 4 wt% g-CN EG gel and 3.45 MPa for 4 wt% g-CN hydrogel). Full recovery without energy loss is observed for at least 20 cycles. Moreover, gel formation can be performed in a spatially controlled way utilizing photomasks with desired shapes. Therefore, the suggested method enables formation of hybrid gels by optical lithography with outstanding mechanical properties very similar to natural cartilage and tendon, and opens up opportunities for future applications in photocatalysis, additive manufacturing of biomedical implants and coating materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA