Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nucleic Acids Res ; 50(W1): W138-W144, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580047

RESUMEN

Cancer is a heterogeneous disease characterized by unregulated cell growth and promoted by mutations in cancer driver genes some of which encode suitable drug targets. Since the distinct set of cancer driver genes can vary between and within cancer types, evidence-based selection of drugs is crucial for targeted therapy following the precision medicine paradigm. However, many putative cancer driver genes can not be targeted directly, suggesting an indirect approach that considers alternative functionally related targets in the gene interaction network. Once potential drug targets have been identified, it is essential to consider all available drugs. Since tools that offer support for systematic discovery of drug repurposing candidates in oncology are lacking, we developed CADDIE, a web application integrating six human gene-gene and four drug-gene interaction databases, information regarding cancer driver genes, cancer-type specific mutation frequencies, gene expression information, genetically related diseases, and anticancer drugs. CADDIE offers access to various network algorithms for identifying drug targets and drug repurposing candidates. It guides users from the selection of seed genes to the identification of therapeutic targets or drug candidates, making network medicine algorithms accessible for clinical research. CADDIE is available at https://exbio.wzw.tum.de/caddie/ and programmatically via a python package at https://pypi.org/project/caddiepy/.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Programas Informáticos , Oncogenes , Algoritmos , Mutación , Interacciones Farmacológicas , Reposicionamiento de Medicamentos
2.
Trends Pharmacol Sci ; 43(2): 136-150, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34895945

RESUMEN

For complex diseases, most drugs are highly ineffective, and the success rate of drug discovery is in constant decline. While low quality, reproducibility issues, and translational irrelevance of most basic and preclinical research have contributed to this, the current organ-centricity of medicine and the 'one disease-one target-one drug' dogma obstruct innovation in the most profound manner. Systems and network medicine and their therapeutic arm, network pharmacology, revolutionize how we define, diagnose, treat, and, ideally, cure diseases. Descriptive disease phenotypes are replaced by endotypes defined by causal, multitarget signaling modules that also explain respective comorbidities. Precise and effective therapeutic intervention is achieved by synergistic multicompound network pharmacology and drug repurposing, obviating the need for drug discovery and speeding up clinical translation.


Asunto(s)
Farmacología en Red , Farmacología , Descubrimiento de Drogas , Humanos , Reproducibilidad de los Resultados
3.
Handb Exp Pharmacol ; 264: 145-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32780287

RESUMEN

Reactive oxygen species (ROS) are ubiquitous metabolic products and important cellular signaling molecules that contribute to several biological functions. Pathophysiology arises when ROS are generated either in excess or in cell types or subcellular locations that normally do not produce ROS or when non-physiological types of ROS (e.g., superoxide instead of hydrogen peroxide) are formed. In the latter scenario, antioxidants were considered as the apparent remedy but, clinically, have consistently failed and even sometimes induced harm. The obvious reason for that is the non-selective ROS scavenging effects of antioxidants which interfere with both qualities of ROS, physiological and pathological. Therefore, it is essential to overcome this "antidote or neutralizer" strategy. We here review the most promising alternative approach by identifying the disease-relevant enzymatic sources of ROS, target these selectively, but leave physiological ROS signaling through other sources intact. Among all ROS sources, NADPH oxidases (NOX1-5 and DUOX1-2) stand out as their sole function is to produce ROS, whereas most other enzymatic sources only produce ROS as a by-product or upon biochemical uncoupling or damage. This qualifies NOXs as the main potential drug-target candidates in diseases associated with dysfunction in ROS signaling. As a reflection of this, the development of several NOX inhibitors has taken place. Recently, the WHO approved a new stem, "naxib," which refers to NADPH oxidase inhibitors, and thereby recognized NOX inhibitors as a new therapeutic class. This has been announced while clinical trials with the first-in-class compound, setanaxib (initially known as GKT137831) had been initiated. We also review the differences between the seven NOX family members in terms of structure and function in health and disease and then focus on the most advanced NOX inhibitors with an exclusive focus on clinically relevant validations and applications. Therapeutically relevant NADPH oxidase isoforms type 1, 2, 4, and 5 (NOX1, NOX2, NOX4, NOX5). Of note, NOX5 is not present in mice and rats and thus pre-clinically less studied. NOX2, formerly termed gp91phox, has been correlated with many, too many, diseases and is rather relevant as genetic deficiency in chronic granulomatous disease (CGD), treated by gene therapy. Overproduction of ROS through NOX1, NOX4, and NOX5 leads to the indicated diseases states including atherosclerosis (red), a condition where NOX4 is surprisingly protective.


Asunto(s)
NADPH Oxidasas , Transducción de Señal , Animales , Inhibidores Enzimáticos , Ratones , NADPH Oxidasa 1 , NADPH Oxidasas/metabolismo , Ratas , Especies Reactivas de Oxígeno
4.
Sci Rep ; 10(1): 10012, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561822

RESUMEN

Nitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted, for example, in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase and exogenous NO from NO donor compounds decreased sGC protein and activity. This effect was not mediated by cGMP as the NO-independent sGC stimulator, or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC while leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.


Asunto(s)
Aorta Torácica/metabolismo , GMP Cíclico/metabolismo , Endotelio Vascular/metabolismo , Óxido Nítrico/metabolismo , Arteria Pulmonar/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Guanilato Ciclasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Guanilil Ciclasa Soluble/metabolismo , Porcinos
6.
Pharmaceuticals (Basel) ; 11(3)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932108

RESUMEN

The past decades have witnessed a paradigm shift from the traditional drug discovery shaped around the idea of “one target, one disease” to polypharmacology (multiple targets, one disease). Given the lack of clear-cut boundaries across disease (endo)phenotypes and genetic heterogeneity across patients, a natural extension to the current polypharmacology paradigm is to target common biological pathways involved in diseases via endopharmacology (multiple targets, multiple diseases). In this study, we present proximal pathway enrichment analysis (PxEA) for pinpointing drugs that target common disease pathways towards network endopharmacology. PxEA uses the topology information of the network of interactions between disease genes, pathway genes, drug targets and other proteins to rank drugs by their interactome-based proximity to pathways shared across multiple diseases, providing unprecedented drug repurposing opportunities. Using PxEA, we show that many drugs indicated for autoimmune disorders are not necessarily specific to the condition of interest, but rather target the common biological pathways across these diseases. Finally, we provide high scoring drug repurposing candidates that can target common mechanisms involved in type 2 diabetes and Alzheimer’s disease, two conditions that have recently gained attention due to the increased comorbidity among patients.

7.
Pharmacol Rev ; 70(2): 348-383, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507103

RESUMEN

Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.


Asunto(s)
Enfermedad Crónica/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Análisis de Sistemas , Animales , Antiinflamatorios/uso terapéutico , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Humanos , Factor 2 Relacionado con NF-E2/genética
8.
Free Radic Biol Med ; 97: 556-567, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27445103

RESUMEN

Smooth muscle cell (SMC) proliferation and fibrosis contribute to the development of advanced atherosclerotic lesions. Oxidative stress caused by increased production or unphysiological location of reactive oxygen species (ROS) is a known major pathomechanism. However, in atherosclerosis, in particular under hyperglycaemic/diabetic conditions, the hydrogen peroxide-producing NADPH oxidase type 4 (NOX4) is protective. Here we aim to elucidate the mechanisms underlying this paradoxical atheroprotection of vascular smooth muscle NOX4 under conditions of normo- and hyperglycaemia both in vivo and ex vivo. Following 20-weeks of streptozotocin-induced diabetes, Apoe(-/-) mice showed a reduction in SM-alpha-actin and calponin gene expression with concomitant increases in platelet-derived growth factor (PDGF), osteopontin (OPN) and the extracellular matrix (ECM) protein fibronectin when compared to non-diabetic controls. Genetic deletion of Nox4 (Nox4(-/)(-)Apoe(-/-)) exacerbated diabetes-induced expression of PDGF, OPN, collagen I, and proliferation marker Ki67. Aortic SMCs isolated from NOX4-deficient mice exhibited a dedifferentiated phenotype including loss of contractile gene expression, increased proliferation and ECM production as well as elevated levels of NOX1-associated ROS. Mechanistic studies revealed that elevated PDGF signalling in NOX4-deficient SMCs mediated the loss of calponin and increase in fibronectin, while the upregulation of NOX1 was associated with the increased expression of OPN and markers of proliferation. These findings demonstrate that NOX4 actively regulates SMC pathophysiological responses in diabetic Apoe(-/-) mice and in primary mouse SMCs through the activities of PDGF and NOX1.


Asunto(s)
Aterosclerosis/enzimología , Diabetes Mellitus Experimental/enzimología , Miocitos del Músculo Liso/fisiología , NADPH Oxidasa 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/etiología , Aterosclerosis/patología , Becaplermina , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Fibrosis , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 4/genética , Osteopontina/genética , Osteopontina/metabolismo , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , Superóxidos/metabolismo
9.
Clin Sci (Lond) ; 130(15): 1363-74, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27190136

RESUMEN

Oxidative stress and inflammation are central mediators of atherosclerosis particularly in the context of diabetes. The potential interactions between the major producers of vascular reactive oxygen species (ROS), NADPH oxidase (NOX) enzymes and immune-inflammatory processes remain to be fully elucidated. In the present study we investigated the roles of the NADPH oxidase subunit isoforms, NOX4 and NOX1, in immune cell activation and recruitment to the aortic sinus atherosclerotic plaque in diabetic ApoE(-/-) mice. Plaque area analysis showed that NOX4- and NOX1-derived ROS contribute to atherosclerosis in the aortic sinus following 10 weeks of diabetes. Immunohistochemical staining of the plaques revealed that NOX4-derived ROS regulate T-cell recruitment. In addition, NOX4-deficient mice showed a reduction in activated CD4(+) T-cells in the draining lymph nodes of the aortic sinus coupled with reduced pro-inflammatory gene expression in the aortic sinus. Conversely, NOX1-derived ROS appeared to play a more important role in macrophage accumulation. These findings demonstrate distinct roles for NOX4 and NOX1 in immune-inflammatory responses that drive atherosclerosis in the aortic sinus of diabetic mice.


Asunto(s)
Aortitis/enzimología , Apolipoproteínas E/deficiencia , Aterosclerosis/enzimología , Diabetes Mellitus Experimental/enzimología , Inmunidad Celular , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasas/metabolismo , Seno Aórtico/enzimología , Animales , Aortitis/genética , Aortitis/inmunología , Aortitis/patología , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Linfocitos T CD4-Positivos/enzimología , Linfocitos T CD4-Positivos/inmunología , Quimiotaxis de Leucocito , Citocinas/inmunología , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/enzimología , Macrófagos/inmunología , Ratones Noqueados , NADH NADPH Oxidorreductasas/deficiencia , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , Estrés Oxidativo , Fenotipo , Placa Aterosclerótica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Seno Aórtico/inmunología , Seno Aórtico/patología
10.
Arterioscler Thromb Vasc Biol ; 36(2): 295-307, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26715682

RESUMEN

OBJECTIVE: Oxidative stress is considered a hallmark of atherosclerosis. In particular, the superoxide-generating type 1 NADPH oxidase (NOX1) has been shown to be induced and play a pivotal role in early phases of mouse models of atherosclerosis and in the context of diabetes mellitus. Here, we investigated the role of the most abundant type 4 isoform (NOX4) in human and mouse advanced atherosclerosis. APPROACH AND RESULTS: Plaques of patients with cardiovascular events or established diabetes mellitus showed a surprising reduction in expression of the most abundant but hydrogen peroxide (H2O2)-generating type 4 isoform (Nox4), whereas Nox1 mRNA was elevated, when compared with respective controls. As these data suggested that NOX4-derived reactive oxygen species may convey a surprisingly protective effect during plaque progression, we examined a mouse model of accelerated and advanced diabetic atherosclerosis, the streptozotocin-treated ApoE(-/-) mouse, with (NOX4(-/-)) and without genetic deletion of Nox4. Similar to the human data, advanced versus early plaques of wild-type mice showed reduced Nox4 mRNA expression. Consistent with a rather protective role of NOX4-derived reactive oxygen species, NOX4(-/-) mice showed increased atherosclerosis when compared with wild-type mice. Deleting NOX4 was associated with reduced H2O2 forming activity and attenuation of the proinflammatory markers, monocyte chemotratic protein-1, interleukin-1ß, and tumor necrosis factor-α, as well as vascular macrophage accumulation. Furthermore, there was a greater accumulation of fibrillar collagen fibres within the vascular wall and plaque in diabetic Nox4(-/-)ApoE(-/-) mice, indicative of plaque remodeling. These data could be replicated in human aortic endothelial cells in vitro, where Nox4 overexpression increased H2O2 and reduced the expression of pro-oxidants and profibrotic markers. Interestingly, Nox4 levels inversely correlated with Nox2 gene and protein levels. Although NOX2 is not constitutively active unlike NOX4 and forms rather superoxide, this opens up the possibility that at least some effects of NOX4 deletion are mediated by NOX2 activation. CONCLUSIONS: Thus, the appearance of reactive oxygen species in atherosclerosis is apparently not always a nondesirable oxidative stress, but can also have protective effects. Both in humans and in mouse, the H2O2-forming NOX4, unlike the superoxide-forming NOX1, can act as a negative modulator of inflammation and remodeling and convey atheroprotection. These results have implications on how to judge reactive oxygen species formation in cardiovascular disease and need to be considered in the development of NOX inhibitory drugs.


Asunto(s)
Aorta/enzimología , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Peróxido de Hidrógeno/metabolismo , Inflamación/prevención & control , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Placa Aterosclerótica , Remodelación Vascular , Animales , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Estudios de Casos y Controles , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/patología , Colágenos Fibrilares/metabolismo , Humanos , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Noqueados , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , Interferencia de ARN , Transducción de Señal , Superóxidos/metabolismo , Factores de Tiempo , Transfección
11.
Antioxid Redox Signal ; 23(14): 1130-43, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26154592

RESUMEN

SIGNIFICANCE: It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. RECENT ADVANCES: The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. CRITICAL ISSUES: Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. FUTURE DIRECTIONS: Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.


Asunto(s)
Antioxidantes/farmacología , Estilbenos/farmacología , Animales , Antioxidantes/uso terapéutico , Humanos , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Estilbenos/uso terapéutico , Investigación Biomédica Traslacional
12.
J Am Soc Nephrol ; 25(6): 1237-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24511132

RESUMEN

Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)-forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE(-/-) mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE(-/-) mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , NADPH Oxidasas/antagonistas & inhibidores , Podocitos/enzimología , Pirazoles/farmacología , Piridinas/farmacología , Albuminuria/tratamiento farmacológico , Albuminuria/enzimología , Albuminuria/genética , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Línea Celular Transformada , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/metabolismo , Silenciador del Gen , Glucosa/farmacología , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Podocitos/citología , Pirazolonas , Piridonas , Especies Reactivas de Oxígeno/metabolismo
13.
Antioxid Redox Signal ; 20(17): 2726-40, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24053718

RESUMEN

AIMS: Ischemic retinal diseases such as retinopathy of prematurity are major causes of blindness due to damage to the retinal microvasculature. Despite this clinical situation, retinopathy of prematurity is mechanistically poorly understood. Therefore, effective preventative therapies are not available. However, hypoxic-induced increases in reactive oxygen species (ROS) have been suggested to be involved with NADPH oxidases (NOX), the only known dedicated enzymatic source of ROS. Our major aim was to determine the contribution of NOX isoforms (1, 2, and 4) to a rodent model of retinopathy of prematurity. RESULTS: Using a genetic approach, we determined that only mice with a deletion of NOX1, but not NOX2 or NOX4, were protected from retinal neovascularization and vaso-obliteration, adhesion of leukocytes, microglial accumulation, and the increased generation of proangiogenic and proinflammatory factors and ROS. We complemented these studies by showing that the specific NOX inhibitor, GKT137831, reduced vasculopathy and ROS levels in retina. The source of NOX isoforms was evaluated in retinal vascular cells and neuro-glial elements. Microglia, the immune cells of the retina, expressed NOX1, 2, and 4 and responded to hypoxia with increased ROS formation, which was reduced by GKT137831. INNOVATION: Our studies are the first to identify the NOX1 isoform as having an important role in the pathogenesis of retinopathy of prematurity. CONCLUSIONS: Our findings suggest that strategies targeting NOX1 have the potential to be effective treatments for a range of ischemic retinopathies.


Asunto(s)
Isquemia/genética , NADPH Oxidasas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Retinopatía de la Prematuridad/genética , Animales , Modelos Animales de Enfermedad , Humanos , Isquemia/metabolismo , Isquemia/patología , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Ratones , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Oxidación-Reducción , Pirazoles/administración & dosificación , Pirazolonas , Piridinas/administración & dosificación , Piridonas , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología , Lesiones del Sistema Vascular/enzimología
14.
Nat Commun ; 3: 649, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22337127

RESUMEN

Lung ischaemia-reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2(y/-)) or the classical transient receptor potential channel 6 (TRPC6(-/-)) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca(2+) influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2(y/-) cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-γ, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE.


Asunto(s)
Edema/terapia , Pulmón/patología , Daño por Reperfusión , Canales Catiónicos TRPC/genética , Animales , Calcio/metabolismo , Diacilglicerol Quinasa/metabolismo , Edema/patología , Células Endoteliales/citología , Eliminación de Gen , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Permeabilidad , Fosfolipasa C gamma/metabolismo , Especies Reactivas de Oxígeno , Canal Catiónico TRPC6 , Factores de Tiempo
15.
PLoS One ; 6(8): e23596, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858179

RESUMEN

In cardiovascular disease, the protective NO/sGC/cGMP signalling-pathway is impaired due to a decreased pool of NO-sensitive haem-containing sGC accompanied by a reciprocal increase in NO-insensitive haem-free sGC. However, no direct method to detect cellular haem-free sGC other than its activation by the new therapeutic class of haem mimetics, such as BAY 58-2667, is available. Here we show that fluorescence dequenching, based on the interaction of the optical active prosthetic haem group and the attached biarsenical fluorophor FlAsH can be used to detect changes in cellular sGC haem status. The partly overlap of the emission spectrum of haem and FlAsH allows energy transfer from the fluorophore to the haem which reduces the intensity of FlAsH fluorescence. Loss of the prosthetic group, e.g. by oxidative stress or by replacement with the haem mimetic BAY 58-2667, prevented the energy transfer resulting in increased fluorescence. Haem loss was corroborated by an observed decrease in NO-induced sGC activity, reduced sGC protein levels, and an increased effect of BAY 58-2667. The use of a haem-free sGC mutant and a biarsenical dye that was not quenched by haem as controls further validated that the increase in fluorescence was due to the loss of the prosthetic haem group. The present approach is based on the cellular expression of an engineered sGC variant limiting is applicability to recombinant expression systems. Nevertheless, it allows to monitor sGC's redox regulation in living cells and future enhancements might be able to extend this approach to in vivo conditions.


Asunto(s)
Fluorescencia , Guanilato Ciclasa/metabolismo , Hemo/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Benzoatos/farmacología , Células CHO , Cricetinae , Cricetulus , GMP Cíclico/metabolismo , Cisteína/genética , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Colorantes Fluorescentes/química , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Humanos , Datos de Secuencia Molecular , Mutación , Óxido Nítrico/metabolismo , Oxadiazoles/farmacología , Oxazinas/farmacología , Oxidación-Reducción/efectos de los fármacos , Ingeniería de Proteínas/métodos , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Rotenona/farmacología , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble , Espectrometría de Fluorescencia
16.
Hypertension ; 56(3): 490-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20606112

RESUMEN

Arterial hypertension is associated with increased levels of reactive oxygen species, which may scavenge endothelium-derived NO and thereby diminish its vasorelaxant effects. However, the quantitatively relevant source of reactive oxygen species is unclear. Thus, this potential pathomechanism is not yet pharmacologically targetable. Several enzymatic sources of reactive oxygen species have been suggested: uncoupled endothelial NO synthase, xanthine oxidase, and NADPH oxidases. Here we show that increased reactive oxygen species formation in aortas of 12- to 14-month-old spontaneously hypertensive rats versus age-matched Wistar Kyoto rats is inhibited by the specific NADPH oxidase inhibitor VAS2870 but neither by the xanthine oxidase inhibitor oxypurinol nor the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester. NADPH oxidase activity, as well as protein expression of its catalytic subunits, NOX1 and NOX2, was increased in the aortas of spontaneously hypertensive rats, whereas the expression of NOX4 protein, the most abundant NOX isoform, was not significantly changed. Impaired acetylcholine-induced relaxation of spontaneously hypertensive rat aortas was significantly improved by VAS2870. In conclusion, NOX1 and NOX2 but not NOX4 proteins are increased in aged spontaneously hypertensive rat aortas. Importantly, these NOX isoforms, in particular, ectopic expression of NOX1 in endothelial cells, appear to affect vascular function in an NADPH oxidase inhibitor-reversible manner. NADPH oxidases may, thus, be a novel target for the treatment of systemic hypertension.


Asunto(s)
Aorta/fisiopatología , Endotelio Vascular/fisiopatología , Hipertensión/fisiopatología , Glicoproteínas de Membrana/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo/fisiología , Acetilcolina/farmacología , Envejecimiento , Análisis de Varianza , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Western Blotting , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Técnica del Anticuerpo Fluorescente , Hipertensión/metabolismo , Masculino , NADPH Oxidasa 1 , NADPH Oxidasa 2 , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno/metabolismo , Xantina Oxidasa/metabolismo
17.
Free Radic Biol Med ; 45(9): 1340-51, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18760347

RESUMEN

NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.


Asunto(s)
Angiotensina II/metabolismo , Peróxido de Hidrógeno/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasas/metabolismo , Superóxidos/metabolismo , Animales , Membrana Celular/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Silenciador del Gen , Peróxido de Hidrógeno/química , Modelos Biológicos , Modelos Químicos , NADPH Oxidasa 1 , NADPH Oxidasa 4 , Oxígeno/química , Ratas , Transducción de Señal
18.
FEBS Lett ; 582(2): 327-31, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18155168

RESUMEN

Endothelium-derived nitric oxide (NO) activates the heterodimeric heme protein soluble guanylate cyclase (sGC) to form cGMP. In different disease states, sGC levels and activity are diminished possibly involving the sGC binding chaperone, heat shock protein 90 (hsp90). Here we show that prolonged hsp90 inhibition in different cell types reduces protein levels of both sGC subunits by about half, an effect that was prevented by the proteasome inhibitor MG132. Conversely, acute hsp90 inhibition affected neither basal nor NO-stimulated sGC activity. Thus, hsp90 is a molecular stabilizer for sGC tonically preventing proteasomal degradation rather than having a role in short-term activity regulation.


Asunto(s)
Guanilato Ciclasa/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Animales , GMP Cíclico/metabolismo , Dimerización , Activación Enzimática , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Células PC12 , Ratas , Spodoptera
19.
Circ Res ; 101(3): 258-67, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17585072

RESUMEN

Nonphagocytic NADPH oxidases have recently been suggested to play a major role in the regulation of physiological and pathophysiological processes, in particular, hypertrophy, remodeling, and angiogenesis in the systemic circulation. Moreover, NADPH oxidases have been suggested to serve as oxygen sensors in the lung. Chronic hypoxia induces vascular remodeling with medial hypertrophy leading to the development of pulmonary hypertension. We screened lung tissue for the expression of NADPH oxidase subunits. NOX1, NOXA1, NOXO1, p22phox, p47phox, p40phox, p67phox, NOX2, and NOX4 were present in mouse lung tissue. Comparing mice maintained for 21 days under hypoxic (10% O(2)) or normoxic (21% O(2)) conditions, an upregulation exclusively of NOX4 mRNA was observed under hypoxia in homogenized lung tissue, concomitant with increased levels in microdissected pulmonary arterial vessels. In situ hybridization and immunohistological staining for NOX4 in mouse lungs revealed a localization of NOX4 mRNA and protein predominantly in the media of small pulmonary arteries, with increased labeling intensities after chronic exposure to hypoxia. In isolated pulmonary arterial smooth muscle cells (PASMCs), NOX4 was localized primarily to the perinuclear space and its expression levels were increased after exposure to hypoxia. Treatment of PASMCs with siRNA directed against NOX4 decreased NOX4 mRNA levels and reduced PASMC proliferation as well as generation of reactive oxygen species. In lungs from patients with idiopathic pulmonary arterial hypertension (IPAH), expression levels of NOX4, which was localized in the vessel media, were 2.5-fold upregulated. These results support an important role for NOX4 in the vascular remodeling associated with development of pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/enzimología , Hipoxia/enzimología , NADPH Oxidasas/fisiología , Animales , División Celular , Células Cultivadas/efectos de los fármacos , Células Cultivadas/enzimología , Enfermedad Crónica , Diseño de Fármacos , Retículo Endoplásmico/enzimología , Inducción Enzimática , Femenino , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipertrofia , Hipoxia/complicaciones , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/irrigación sanguínea , Masculino , Glicoproteínas de Membrana/análisis , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/análisis , NADPH Oxidasas/biosíntesis , NADPH Oxidasas/genética , Óxido Nítrico/fisiología , Especificidad de Órganos , Oxígeno/metabolismo , Oxígeno/farmacología , Subunidades de Proteína , Arteria Pulmonar/citología , Arteria Pulmonar/enzimología , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/farmacología , Superóxidos/metabolismo , Factor de Crecimiento Transformador beta1/fisiología , Túnica Media/enzimología , Túnica Media/patología
20.
Stroke ; 38(7): 2142-9, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17525399

RESUMEN

BACKGROUND AND PURPOSE: This study tested whether NADPH-oxidase activity, expression, and functional effects on vascular tone are influenced by gender in the rat cerebral circulation and whether such differences are estrogen-dependent. METHODS: NADPH-stimulated superoxide production by cerebral (basilar [BA]; middle cerebral) arteries from male and female Sprague-Dawley rats was measured using lucigenin-enhanced chemiluminescence and dihydroethidium. Protein expression of Nox1, Nox2, Nox4, superoxide dismutase 1 (SOD1), SOD2, and SOD3 was measured using Western blotting. Vascular responses of BA to NADPH were assessed in a myograph. Some female rats were ovariectomized and treated with either vehicle (dimethyl sulfoxide) or 17beta-estradiol. RESULTS: NADPH-stimulated superoxide production by BA and middle cerebral arteries from males was approximately 2-fold greater than vessels from females. Superoxide production was virtually abolished by the NADPH-oxidase inhibitor, diphenyleneiodonium. Protein expression of Nox1 and Nox4 in BA was also higher in males than in females (2.4- and 2.8-fold, respectively), whereas Nox2, SOD1, SOD2, and SOD3 expression did not differ between genders. NADPH induced greater vasorelaxant effects in BA from males versus females (P<0.05). The hydrogen peroxide scavenger, catalase, abolished these NADPH-induced relaxations. NADPH-stimulated superoxide production by BA from ovariectomized rats treated with vehicle was 3-fold greater than levels in intact females. Treatment of ovariectomized rats with 17beta-estradiol decreased superoxide production (P<0.05). NADPH-induced relaxations of BA were smaller in 17beta-estradiol-treated than in vehicle-treated ovariectomized rats (P<0.05). CONCLUSIONS: NADPH-oxidase activity and function are lower in cerebral arteries of female rats. These gender differences are estrogen-dependent and are associated with lower Nox1 and Nox4 expression.


Asunto(s)
Arterias Cerebrales/metabolismo , Circulación Cerebrovascular , Estrógenos/metabolismo , Isoenzimas/metabolismo , NADPH Oxidasas/metabolismo , Animales , Arteria Basilar/anatomía & histología , Arteria Basilar/metabolismo , Estrógenos/administración & dosificación , Femenino , Peróxido de Hidrógeno/metabolismo , Isoenzimas/genética , Masculino , NADPH Oxidasas/genética , Ovariectomía , Oxidantes/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA