Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Injury ; 43(10): 1689-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22769980

RESUMEN

For tissue engineering of critical size bone grafts, nanocomposites are getting more and more attractive due to their controllable physical and biological properties. We report in vitro and in vivo behaviour of an electrospun nanocomposite based on poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) seeded with human adipose-derived stem cells (ASC) compared to PLGA. Major findings were that cell attachment, three-dimensional ingrowth and proliferation were very good on both materials. Cell morphology changed from a spindle-shaped fibroblast-like form to a more roundish type when ASC were seeded on PLGA, while they retained their morphology on PLGA/a-CaP. Moreover, we found ASC differentiation to a phenotype committed towards osteogenesis when a-CaP nanoparticles were suspended in normal culture medium without any osteogenic supplements, which renders a-CaP nanoparticles an interesting osteoinductive component for the synthesis of other nanocomposites than PLGA/a-CaP. Finally, electrospun PLGA/a-CaP scaffold architecture is suitable for a rapid and homogenous vascularisation confirmed by a complete penetration by avian vessels from the chick chorioallantoic membrane (CAM) within one week.


Asunto(s)
Tejido Adiposo/citología , Trasplante Óseo/métodos , Fosfatos de Calcio/química , Ácido Láctico/química , Nanocompuestos/química , Osteoblastos , Osteogénesis , Ácido Poliglicólico/química , Trasplante de Células Madre , Ingeniería de Tejidos , Andamios del Tejido , Materiales Biocompatibles , Proliferación Celular , Femenino , Humanos , Masculino , Nanopartículas , Osteogénesis/fisiología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
2.
Open Orthop J ; 5: 63-71, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21566736

RESUMEN

BACKGROUND: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. MATERIALS AND METHODS: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. RESULTS: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. CONCLUSIONS: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.

3.
Nanoscale ; 3(2): 401-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21060938

RESUMEN

The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a-CaP/Col/PLGA compositions were synthesised by electrospinning to mimic the actual composition of bone tissue. Immersion in simulated body fluid and in cell culture medium resulted in the deposition of a hydroxyapatite layer. Incubation of hMSC for 4 weeks allowed for assessment of the proliferation and osteogenic differentiation of the cells on both sides of the double membrane. Confocal laser scanning microscopy was used to observe the proper adhesion of the cells. Calcium and collagen content was proven by Alizarin red S and Sirius red assays. Acute cytotoxic effects of the nanoparticles or the chemicals used in the scaffold preparation could be excluded based on viability assays (alamarBlue and alkaline phosphatase activity). The findings suggest possible application of such double membranes is in treatment of bone defects with complex geometries as wound dressing material.


Asunto(s)
Fosfatos de Calcio/química , Colágeno/química , Ácido Láctico/química , Células Madre Mesenquimatosas/citología , Nanofibras/química , Ácido Poliglicólico/química , Materiales Biocompatibles/química , Diferenciación Celular , Células Cultivadas , Humanos , Microscopía Confocal , Nanofibras/ultraestructura , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ingeniería de Tejidos
4.
J Biomed Mater Res B Appl Biomater ; 84(2): 350-62, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17618506

RESUMEN

The present study evaluates the in vitro biomedical performance of an electrospun, flexible, and cotton wool-like poly(lactide-co-glycolide) (PLGA)/amorphous tricalcium phosphate (ATCP) nanocomposite. Experiments on in vitro biomineralization, applicability in model defects and a cell culture study with human mesenchymal stem cells (hMSC) allowed assessing the application of the material for potential use as a bone graft. Scaffolds with different flame made ATCP nanoparticle loadings were prepared by electrospinning of a PLGA-based composite. Immersion in simulated body fluid showed significant deposition of a hydroxyapatite layer only on the surface of ATCP doped PLGA (up to 175% mass gain within 15 days for PLGA/ATCP 60:40). Proliferation and osteogenic differentiation of hMSC on different nanocomposites were assessed by incubating cells in osteogenic medium for 4 weeks. Proper adhesion and an unaffected morphology of the cells were observed by confocal laser scanning microscopy for all samples. Fluorometric quantification of dsDNA and analysis of ALP activity revealed no significant difference between the tested scaffolds and excluded any acute cytotoxic effects of the nanoparticles. The osteocalcin content for all scaffolds was 0.12-0.19 ng/ng DNA confirming osteogenic differentiation of human mesenchymal stem cells on these flexible bone implants.


Asunto(s)
Materiales Biocompatibles/síntesis química , Diferenciación Celular/fisiología , Fibra de Algodón , Células Madre Mesenquimatosas/citología , Nanocompuestos/química , Osteogénesis/fisiología , Materiales Biocompatibles/química , Fosfatos de Calcio , Células Cultivadas , Humanos , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA