Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
2.
FASEB J ; 30(5): 1849-64, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26839380

RESUMEN

Cardiac myosin-binding protein C (cMyBP-C) regulates actin-myosin interaction and thereby cardiac myocyte contraction and relaxation. This physiologic function is regulated by cMyBP-C phosphorylation. In our study, reduced site-specific cMyBP-C phosphorylation coincided with increased S-glutathiolation in ventricular tissue from patients with dilated or ischemic cardiomyopathy compared to nonfailing donors. We used redox proteomics, to identify constitutive and disease-specific S-glutathiolation sites in cMyBP-C in donor and patient samples, respectively. Among those, a cysteine cluster in the vicinity of the regulatory phosphorylation sites within the myosin S2 interaction domain C1-M-C2 was identified and showed enhanced S-glutathiolation in patients. In vitro S-glutathiolation of recombinant cMyBP-C C1-M-C2 occurred predominantly at Cys(249), which attenuated phosphorylation by protein kinases. Exposure to glutathione disulfide induced cMyBP-C S-glutathiolation, which functionally decelerated the kinetics of Ca(2+)-activated force development in ventricular myocytes from wild-type, but not those from Mybpc3-targeted knockout mice. These oxidation events abrogate protein kinase-mediated phosphorylation of cMyBP-C and therefore potentially contribute to the reduction of its phosphorylation and the contractile dysfunction observed in human heart failure.-Stathopoulou, K., Wittig, I., Heidler, J., Piasecki, A., Richter, F., Diering, S., van der Velden, J., Buck, F., Donzelli, S., Schröder, E., Wijnker, P. J. M., Voigt, N., Dobrev, D., Sadayappan, S., Eschenhagen, T., Carrier, L., Eaton, P., Cuello, F. S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica/fisiología , Glutatión/metabolismo , Insuficiencia Cardíaca/metabolismo , Adulto , Animales , Fármacos Cardiovasculares/uso terapéutico , Proteínas Portadoras/genética , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Oxidación-Reducción , Fosforilación , Adulto Joven
3.
PLoS One ; 6(9): e24825, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949762

RESUMEN

MRCKα and MRCKß (myotonic dystrophy kinase-related Cdc42-binding kinases) belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC) phosphorylation, MRCKα and MRCKß influence cell shape and motility. We report further evidence for MRCKα and MRCKß contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKß together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKß kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 µM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC(50) values for MRCKα and MRCKß. We also describe the crystal structure of MRCKß in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts.


Asunto(s)
Invasividad Neoplásica/patología , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/química , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Amidas/química , Amidas/farmacología , Dominio Catalítico , Línea Celular Tumoral , Colágeno/metabolismo , Cristalografía por Rayos X , Combinación de Medicamentos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Concentración 50 Inhibidora , Laminina/metabolismo , Modelos Moleculares , Proteína Quinasa de Distrofia Miotónica , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/efectos de los fármacos , Proteoglicanos/metabolismo , Piridinas/química , Piridinas/farmacología , Tiofenos/química , Tiofenos/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
4.
Cancer Cell ; 19(6): 776-91, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21665151

RESUMEN

Tumors and associated stroma manifest mechanical properties that promote cancer. Mechanosensation of tissue stiffness activates the Rho/ROCK pathway to increase actomyosin-mediated cellular tension to re-establish force equilibrium. To determine how actomyosin tension affects tissue homeostasis and tumor development, we expressed conditionally active ROCK2 in mouse skin. ROCK activation elevated tissue stiffness via increased collagen. ß-catenin, a key element of mechanotranscription pathways, was stabilized by ROCK activation leading to nuclear accumulation, transcriptional activation, and consequent hyperproliferation and skin thickening. Inhibiting actomyosin contractility by blocking LIMK or myosin ATPase attenuated these responses, as did FAK inhibition. Tumor number, growth, and progression were increased by ROCK activation, while ROCK blockade was inhibitory, implicating actomyosin-mediated cellular tension and consequent collagen deposition as significant tumor promoters.


Asunto(s)
Actomiosina/fisiología , Epidermis/patología , Neoplasias Cutáneas/etiología , beta Catenina/fisiología , Animales , Fenómenos Biomecánicos , Proliferación Celular , Células Cultivadas , Humanos , Hiperplasia , Ratones , Papiloma/etiología , Transducción de Señal , Quinasas Asociadas a rho/análisis , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/fisiología
5.
Am J Physiol Heart Circ Physiol ; 295(1): H425-33, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18502910

RESUMEN

Peroxiredoxins (Prdxs), a family of antioxidant and redox-signaling proteins, are plentiful within the heart; however, their cardiac functions are poorly understood. These studies were designed to characterize the complex changes in Prdxs induced by oxidant stress in rat myocardium. Hydrogen peroxide, a Prdx substrate, was used as the model oxidant pertinent to redox signaling during health and to injury at higher concentrations. Rat hearts were aerobically perfused with a broad concentration range of hydrogen peroxide by the Langendorff method, homogenized, and analyzed by immunoblotting. Heart extracts were also analyzed by size-exclusion chromatography under nondenaturing conditions. Hydrogen peroxide-induced changes in disulfide bond formation, nonreversible oxidation of cysteine (hyperoxidation), and subcellular localization were determined. Hydrogen peroxide induced an array of changes in the myocardium, including formation of disulfide bonds that were intermolecular for Prdx1, Prdx2, and Prdx3 but intramolecular within Prdx5. For Prdx1, Prdx2, and Prdx5, disulfide bond formation can be approximated to an EC(50) of 10-100, 1-10, and 100-1,000 microM peroxide, respectively. Hydrogen peroxide induced hyperoxidation, not just within monomeric Prdx (by SDS-PAGE), but also within Prdx disulfide dimers, and reflects a flexibility within the dimeric unit. Prdx oxidation was also associated with movement from the cytosolic to the membrane and myofilament-enriched fractions. In summary, Prdxs undergo a complex series of redox-dependent structural changes in the heart in response to oxidant challenge with its substrate hydrogen peroxide.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Miocardio/enzimología , Oxidantes/metabolismo , Estrés Oxidativo , Peroxirredoxinas/metabolismo , Animales , Cromatografía en Gel , Cisteína/metabolismo , Disulfuros/metabolismo , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/toxicidad , Immunoblotting , Técnicas In Vitro , Masculino , Oxidantes/toxicidad , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Perfusión , Ratas , Ratas Wistar , Transducción de Señal
6.
Science ; 317(5843): 1393-7, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17717153

RESUMEN

Changes in the concentration of oxidants in cells can regulate biochemical signaling mechanisms that control cell function. We have found that guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) functions directly as a redox sensor. The Ialpha isoform, PKGIalpha, formed an interprotein disulfide linking its two subunits in cells exposed to exogenous hydrogen peroxide. This oxidation directly activated the kinase in vitro, and in rat cells and tissues. The affinity of the kinase for substrates it phosphorylates was enhanced by disulfide formation. This oxidation-induced activation represents an alternate mechanism for regulation along with the classical activation involving nitric oxide and cGMP. This mechanism underlies cGMP-independent vasorelaxation in response to oxidants in the cardiovascular system and provides a molecular explantion for how hydrogen peroxide can operate as an endothelium-derived hyperpolarizing factor.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Cisteína/metabolismo , Oxidantes/metabolismo , Animales , Aorta , Línea Celular , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Disulfuros/metabolismo , Activación Enzimática , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Óxido Nítrico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Wistar , Transducción de Señal , Técnicas de Cultivo de Tejidos , Transfección , Vasodilatación/fisiología
7.
J Biol Chem ; 281(31): 21827-21836, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16754666

RESUMEN

Here we demonstrate that type I protein kinase A is redoxactive, forming an interprotein disulfide bond between its two regulatory RI subunits in response to cellular hydrogen peroxide. This oxidative disulfide formation causes a subcellular translocation and activation of the kinase, resulting in phosphorylation of established substrate proteins. The translocation is mediated at least in part by the oxidized form of the kinase having an enhanced affinity for alpha-myosin heavy chain, which serves as a protein kinase A (PKA) anchor protein and localizes the PKA to its myofilament substrates troponin I and myosin binding protein C. The functional consequence of these events in cardiac myocytes is that hydrogen peroxide increases contractility independently of beta-adrenergic stimulation and elevations of cAMP. The oxidant-induced phosphorylation of substrate proteins and increased contractility is blocked by the kinase inhibitor H89, indicating that these events involve PKA activation. In essence, type I PKA contains protein thiols that operate as redox sensors, and their oxidation by hydrogen peroxide directly activates the kinase.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Oxidantes/farmacología , Animales , Células Cultivadas , Disulfuros , Activación Enzimática/efectos de los fármacos , Corazón , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Oxidación-Reducción , Fosforilación , Subunidades de Proteína , Transporte de Proteínas , Ratas , Ratas Wistar , Miosinas Ventriculares
8.
Trends Biochem Sci ; 28(1): 32-40, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12517450

RESUMEN

Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three classes: typical 2-Cys Prxs; atypical 2-Cys Prxs; and 1-Cys Prxs. All Prxs share the same basic catalytic mechanism, in which an active-site cysteine (the peroxidatic cysteine) is oxidized to a sulfenic acid by the peroxide substrate. The recycling of the sulfenic acid back to a thiol is what distinguishes the three enzyme classes. Using crystal structures, a detailed catalytic cycle has been derived for typical 2-Cys Prxs, including a model for the redox-regulated oligomeric state proposed to control enzyme activity.


Asunto(s)
Peroxidasas/metabolismo , Sitios de Unión , Catálisis , Dimerización , Oxidación-Reducción , Peroxidasas/química , Peroxirredoxinas , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA