Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Pharmacol Exp Ther ; 380(3): 210-219, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031585

RESUMEN

Etavopivat is an investigational, oral, small molecule activator of erythrocyte pyruvate kinase (PKR) in development for the treatment of sickle cell disease (SCD) and other hemoglobinopathies. PKR activation is proposed to ameliorate the sickling of SCD red blood cells (RBCs) through multiple mechanisms, including reduction of 2,3-diphosphoglycerate (2,3-DPG), which consequently increases hemoglobin (Hb)-oxygen affinity; increased binding of oxygen reduces sickle hemoglobin polymerization and sickling. In addition, PKR activation increases adenosine triphosphate (ATP) produced via glycolytic flux, which helps preserve membrane integrity and RBC deformability. We evaluated the pharmacodynamic response to etavopivat in nonhuman primates (NHPs) and in healthy human subjects and evaluated the effects in RBCs from patients with SCD after ex vivo treatment with etavopivat. A single dose of etavopivat decreased 2,3-DPG in NHPs and healthy subjects. Hb-oxygen affinity was significantly increased in healthy subjects after 24 hours. After daily dosing of etavopivat over 5 consecutive days in NHPs, ATP was increased by 38% from baseline. Etavopivat increased Hb-oxygen affinity and reduced sickling in RBCs collected from patients with SCD with either homozygous hemoglobin S or hemoglobin S and C disease. Collectively, these results demonstrate the ability of etavopivat to decrease 2,3-DPG and increase ATP, resulting in increased Hb-oxygen affinity and improved sickle RBC function. Etavopivat is currently being evaluated in clinical trials for the treatment of SCD. SIGNIFICANCE STATEMENT: Etavopivat, a small molecule activator of the glycolytic enzyme erythrocyte pyruvate kinase, decreased 2,3-diphosphoglycerate in red blood cells (RBCs) from nonhuman primates and healthy subjects and significantly increased hemoglobin (Hb)-oxygen affinity in healthy subjects. Using ex vivo RBCs from donors with sickle cell disease (SCD) (homozygous hemoglobin S or hemoglobin S and C genotype), etavopivat increased Hb-oxygen affinity and reduced sickling under deoxygenation. Etavopivat shows promise as a treatment for SCD that could potentially reduce vaso-occlusion and improve anemia.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , 2,3-Difosfoglicerato/metabolismo , 2,3-Difosfoglicerato/farmacología , Adenosina Trifosfato/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Animales , Eritrocitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/farmacología , Hemoglobina Falciforme/uso terapéutico , Hemoglobinas/metabolismo , Humanos , Oxígeno/metabolismo , Piruvato Quinasa/metabolismo , Piruvato Quinasa/farmacología , Piruvato Quinasa/uso terapéutico , Ácido Pirúvico/farmacología
2.
Clin Pharmacol Drug Dev ; 11(5): 654-665, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35019238

RESUMEN

Etavopivat (FT-4202) is an orally administered, small-molecule allosteric activator of erythrocyte pyruvate kinase-R (PKR) in clinical development for the treatment of sickle cell disease and other hemoglobin disorders. This randomized, placebo-controlled, double-blind, first-in-human combination single-ascending dose and multiple-ascending dose phase 1 trial (NCT03815695) evaluated the safety and pharmacokinetics/pharmacodynamics of etavopivat in 90 healthy adult subjects. In 4 single-ascending dose cohorts, 8 participants were randomized 3:1 to a single oral dose of either etavopivat (n = 6) or placebo (n = 2). In four 14-day multiple-ascending dose cohorts, 12 participants were randomized 3:1 to 14 days of etavopivat (n = 9) or placebo (n = 3). In these studies, most treatment-emergent adverse events were of mild severity (grade 1) and none led to study discontinuation. Etavopivat exhibited a linear and time-independent pharmacokinetic profile (at doses ≤400 mg) and elicited the expected pharmacodynamic effects of PKR activation (decreased 2,3-diphosphoglycerate and increased adenosine triphosphate) and evidence of improved hemoglobin-oxygen affinity. In addition, pharmacodynamic responses were durable with effects continuing for 48 to 72 hours after the last dose, thereby supporting once-daily dosing. Food appeared to have no clinically meaningful effects on etavopivat exposure, thus facilitating administration with or without food. In conclusion, the evaluation of etavopivat in healthy subjects demonstrated proof of mechanism (PKR activation) without significant adverse events. This study also allowed for the selection of dose levels, projected to have an acceptable safety profile and provide therapeutic benefit, for evaluation in future trials in patients with sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Piruvato Quinasa , Adulto , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Hemoglobinas , Humanos
3.
J Med Chem ; 61(12): 5235-5244, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29856615

RESUMEN

Janus kinases (JAKs) have been demonstrated to be critical in cytokine signaling and have thus been implicated in both cancer and inflammatory diseases. The JAK family consists of four highly homologous members: JAK1-3 and TYK2. The development of small-molecule inhibitors that are selective for a specific family member would represent highly desirable tools for deconvoluting the intricacies of JAK family biology. Herein, we report the discovery of a potent JAK1 inhibitor, 24, which displays ∼1000-fold selectivity over the other highly homologous JAK family members (determined by biochemical assays), while also possessing good selectivity over other kinases (determined by panel screening). Moreover, this compound was demonstrated to be orally bioavailable and possesses acceptable pharmacokinetic parameters. In an in vivo study, the compound was observed to dose dependently modulate the phosphorylation of STAT3 (a downstream marker of JAK1 inhibition).


Asunto(s)
Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Disponibilidad Biológica , Línea Celular , Cristalografía por Rayos X , Humanos , Janus Quinasa 1/química , Janus Quinasa 1/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Janus Quinasa 3/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Am J Cancer Res ; 6(4): 806-18, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27186432

RESUMEN

Dysregulated PI3K/Akt/mTOR (PAM) pathway signaling occurs in ~30% of human cancers, making it a rational target for new therapies; however, the effectiveness of some PAM pathway inhibitors, such as mTORC rapalogs, may be compromised by a compensatory feedback loop leading to Akt activation. In this study, the p70S6K/Akt dual inhibitor, M2698 (previously MSC2363318A), was characterized as a potential anti-cancer agent through examination of its pharmacokinetic, pharmacodynamic and metabolic properties, and anti-tumor activity. M2698 was highly potent in vitro (IC50 1 nM for p70S6K, Akt1 and Akt3 inhibition; IC50 17 nM for pGSK3ß indirect inhibition) and in vivo (IC50 15 nM for pS6 indirect inhibition), and relatively selective (only 6/264 kinases had an IC50 within 10-fold of p70S6K). Orally administered M2698 crossed the blood-brain barrier in rats and mice, with brain tumor exposure 4-fold higher than non-disease brain. Dose-dependent inhibition of target substrate phosphorylation was observed in vitro and in vivo, indicating that M2698 blocked p70S6K to provide potent PAM pathway inhibition while simultaneously targeting Akt to overcome the compensatory feedback loop. M2698 demonstrated dose-dependent tumor growth inhibition in mouse xenograft models derived from PAM pathway-dysregulated human triple-negative (MDA-MB-468) and Her2-expressing breast cancer cell lines (MDA-MB-453 and JIMT-1), and reduced brain tumor burden and prolonged survival in mice with orthotopically implanted U251 glioblastoma. These findings highlight M2698 as a promising PAM pathway inhibitor whose unique mechanism of action and capacity to pass the blood-brain barrier warrant clinical investigation in cancers with PAM pathway dysregulation, and those with central nervous system involvement.

5.
AAPS J ; 17(2): 462-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25630504

RESUMEN

The application of modeling and simulation techniques is increasingly common in preclinical stages of the drug discovery and development process. A survey focusing on preclinical pharmacokinetic/pharmacodynamics (PK/PD) analysis was conducted across pharmaceutical companies that are members of the International Consortium for Quality and Innovation in Pharmaceutical Development. Based on survey responses, ~68% of companies use preclinical PK/PD analysis in all therapeutic areas indicating its broad application. An important goal of preclinical PK/PD analysis in all pharmaceutical companies is for the selection/optimization of doses and/or dose regimens, including prediction of human efficacious doses. Oncology was the therapeutic area with the most PK/PD analysis support and where it showed the most impact. Consistent use of more complex systems pharmacology models and hybrid physiologically based pharmacokinetic models with PK/PD components was less common compared to traditional PK/PD models. Preclinical PK/PD analysis is increasingly being included in regulatory submissions with ~73% of companies including these data to some degree. Most companies (~86%) have seen impact of preclinical PK/PD analyses in drug development. Finally, ~59% of pharmaceutical companies have plans to expand their PK/PD modeling groups over the next 2 years indicating continued growth. The growth of preclinical PK/PD modeling groups in pharmaceutical industry is necessary to establish required resources and skills to further expand use of preclinical PK/PD modeling in a meaningful and impactful manner.


Asunto(s)
Simulación por Computador , Evaluación Preclínica de Medicamentos/métodos , Industria Farmacéutica/métodos , Modelos Biológicos , Recolección de Datos , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Industria Farmacéutica/estadística & datos numéricos , Humanos
6.
PLoS One ; 9(10): e109747, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333487

RESUMEN

Accurate prediction of tumor growth is critical in modeling the effects of anti-tumor agents. Popular models of tumor growth inhibition (TGI) generally offer empirical description of tumor growth. We propose a lifespan-based tumor growth inhibition (LS TGI) model that describes tumor growth in a xenograft mouse model, on the basis of cellular lifespan T. At the end of the lifespan, cells divide, and to account for tumor burden on growth, we introduce a cell division efficiency function that is negatively affected by tumor size. The LS TGI model capability to describe dynamic growth characteristics is similar to many empirical TGI models. Our model describes anti-cancer drug effect as a dose-dependent shift of proliferating tumor cells into a non-proliferating population that die after an altered lifespan TA. Sensitivity analysis indicated that all model parameters are identifiable. The model was validated through case studies of xenograft mouse tumor growth. Data from paclitaxel mediated tumor inhibition was well described by the LS TGI model, and model parameters were estimated with high precision. A study involving a protein casein kinase 2 inhibitor, AZ968, contained tumor growth data that only exhibited linear growth kinetics. The LS TGI model accurately described the linear growth data and estimated the potency of AZ968 that was very similar to the estimate from an established TGI model. In the case study of AZD1208, a pan-Pim inhibitor, the doubling time was not estimable from the control data. By fixing the parameter to the reported in vitro value of the tumor cell doubling time, the model was still able to fit the data well and estimated the remaining parameters with high precision. We have developed a mechanistic model that describes tumor growth based on cell division and has the flexibility to describe tumor data with diverse growth kinetics.


Asunto(s)
Antineoplásicos/uso terapéutico , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Semivida , Humanos , Ratones , Paclitaxel/farmacocinética , Paclitaxel/uso terapéutico , Paclitaxel/toxicidad , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/toxicidad , Trasplante Heterólogo
7.
BMC Gastroenterol ; 14: 57, 2014 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-24679065

RESUMEN

BACKGROUND: European Panel on the Appropriateness of Gastrointestinal Endoscopy (EPAGE) criteria have been developed to increase diagnostic yield, but their predictive value is limited. We investigated the incremental diagnostic value of faecal calprotectin to EPAGE criteria. METHODS: In a post-hoc analysis of a prospective study, EPAGE criteria were applied to 298 of 575 (51.8%) patients who had undergone esophagogastroduodenoscopy (EGD), colonoscopy or both for abdominal complaints at the Division of Gastroenterology & Hepatology at the University Hospital Basel in Switzerland. Faecal calprotectin was measured in stool samples collected within 24 hours before the investigation using an enzyme-linked immunosorbent assay. Final endoscopic diagnoses were blinded to calprotectin values. RESULTS: Of 149 EGDs and 224 colonoscopies, 17.6% and 14.7% respectively were judged inappropriate by EPAGE criteria. Appropriate or uncertain indications revealed more endoscopic findings in both EGD (46.3% vs. 23.1%, P = 0.049) and colonoscopy (23.6% vs. 6.1%, P = 0.041) than inappropriate indications. Median calprotectin levels were higher (81.5 µg/g, interquartile range 26-175, vs. 10 µg/g, IQR 10-22, P < 0.001) and testing was more often positive (>50 µg/g) in patients with endoscopic findings, both in EGD (58.2% vs. 33.0%, P = 0.005) and in colonoscopy (57.3% vs. 7.4%, P < 0.001). The use of faecal calprotectin in addition to EPAGE criteria improved the risk reclassification of patients by endoscopic findings. The calculated net reclassification index was 37.8% (P = 0.002) for EGD and 110.9% (P <0.001) for colonoscopy, thus improving diagnostic yield to 56.8% and 70.2%, respectively. CONCLUSIONS: The use of faecal calprotectin in addition to EPAGE criteria improved diagnostic yield in patients with abdominal complaints.


Asunto(s)
Endoscopía del Sistema Digestivo/métodos , Heces/química , Enfermedades Gastrointestinales/diagnóstico , Complejo de Antígeno L1 de Leucocito/análisis , Adenoma/diagnóstico , Anciano , Carcinoma/diagnóstico , Colitis/diagnóstico , Colonoscopía/métodos , Colonoscopía/normas , Neoplasias Colorrectales/diagnóstico , Endoscopía del Sistema Digestivo/normas , Ensayo de Inmunoadsorción Enzimática , Esofagitis Péptica/diagnóstico , Europa (Continente) , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Masculino , Persona de Mediana Edad , Guías de Práctica Clínica como Asunto , Valor Predictivo de las Pruebas , Estudios Prospectivos , Neoplasias Gástricas/diagnóstico , Úlcera Gástrica/diagnóstico
8.
Bioorg Med Chem Lett ; 20(19): 5847-52, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20727752

RESUMEN

Initial high throughput screening efforts identified highly potent and selective kappa opioid receptor antagonist 3 (κ IC(50)=77 nM; µ:κ and δ:κ IC(50) ratios>400) which lacked CNS exposure in vivo. Modification of this scaffold resulted in development of a series of 8-azabicyclo[3.2.1]octan-3-yloxy-benzamides showing potent and selectivity κ antagonism as well as good brain exposure. Analog 6c (κ IC(50)=20 nM; µ:κ=36, δ:κ=415) was also shown to reverse κ-agonist induced rat diuresis in vivo.


Asunto(s)
Benzamidas/química , Receptores Opioides kappa/antagonistas & inhibidores , Tropanos/química , Animales , Benzamidas/síntesis química , Benzamidas/farmacocinética , Línea Celular Tumoral , Diuresis/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Microsomas Hepáticos/metabolismo , Ratas , Receptores Opioides kappa/metabolismo , Relación Estructura-Actividad , Tropanos/síntesis química , Tropanos/farmacocinética
9.
Drug Metab Dispos ; 33(6): 719-25, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15764716

RESUMEN

The metabolism of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and one of its one-ring open metabolites to its active metal ion binding form N,N'-[(1S)-1-methyl-1,2-ethanediyl-]bis[(N-(2-amino-2-oxoethyl)]glycine (ADR-925) has been investigated in neonatal rat myocyte and adult rat hepatocyte suspensions, and in human and rat blood and plasma with a view to characterizing their hydrolysis-activation. Dexrazoxane is clinically used to reduce the iron-based oxygen free radical-mediated cardiotoxicity of the anticancer drug doxorubicin. Dexrazoxane may act through its hydrolysis product ADR-925 by removing iron from the iron-doxorubicin complex, or binding free iron, thus preventing oxygen radical formation. Our results indicate that dexrazoxane underwent partial uptake and/or hydrolysis by myocytes. A one-ring open metabolite of dexrazoxane underwent nearly complete dihydroorotase-catalyzed metabolism in a myocyte suspension. Hepatocytes that contain both dihydropyrimidinase and dihydroorotase completely hydrolyzed dexrazoxane to ADR-925 and released it into the extracellular medium. Thus, in hepatocytes, the two liver enzymes acted in concert, and sequentially, on dexrazoxane, first to produce the two ring-opened metabolites, and then to produce the metabolite ADR-925. We also showed that the hydrolysis of one of these metabolites was promoted by Ca2+ and Mg2+ in plasma, and thus, further metabolism of these intermediates likely occurs in the plasma after they are released from the liver and kidney. In conclusion, these studies provide a nearly complete description of the metabolism of dexrazoxane by myocytes and hepatocytes to its presumably active form, ADR-925.


Asunto(s)
Cardiotónicos/sangre , Cardiotónicos/metabolismo , Hepatocitos/metabolismo , Miocitos Cardíacos/metabolismo , Razoxano/sangre , Razoxano/metabolismo , Adulto , Animales , Cardiotónicos/química , Femenino , Humanos , Ratas , Ratas Sprague-Dawley , Razoxano/química
10.
Cancer Chemother Pharmacol ; 53(1): 91-3, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14574459

RESUMEN

PURPOSE: The pharmacokinetics of etoposide were studied in cancer patients with brain metastases treated with high-dose etoposide in order to determine if the pharmacokinetics were altered by the use of dexrazoxane as a rescue agent to reduce the extracerebral toxicity of etoposide. METHODS: Etoposide plasma levels were determined by HPLC. RESULTS: The etoposide pharmacokinetics described by a monophasic first-order elimination model were found to be similar to other reported data in other settings and at similar doses. CONCLUSIONS: The pharmacokinetics of etoposide were unaffected by dexrazoxane rescue.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/sangre , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/secundario , Carcinoma de Células Pequeñas/sangre , Carcinoma de Células Pequeñas/metabolismo , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Área Bajo la Curva , Neoplasias Encefálicas/tratamiento farmacológico , Carcinoma de Células Pequeñas/tratamiento farmacológico , Catéteres de Permanencia , Cromatografía Líquida de Alta Presión , Etopósido/administración & dosificación , Etopósido/sangre , Humanos , Infusiones Intravenosas , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Razoxano/administración & dosificación , Razoxano/sangre
11.
Cancer Chemother Pharmacol ; 52(2): 167-74, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12750840

RESUMEN

PURPOSE: The study was undertaken to determine the metabolism of dexrazoxane (ICRF-187) to its one-ring open hydrolysis products and its two-rings opened metal-chelating product ADR-925 in cancer patients with brain metastases treated with high-dose etoposide. In this phase I/II trial dexrazoxane was used as a rescue agent to reduce the extracerebral toxicity of etoposide. METHODS: Dexrazoxane and its one-ring open hydrolysis products were determined by HPLC and ADR-925 was determined by a fluorescence flow injection assay. RESULTS: The two one-ring open hydrolysis intermediates of dexrazoxane appeared in the plasma at low levels upon completion of dexrazoxane infusion and then rapidly decreased with half-lives of 0.6 and 2.5 h. A plasma concentration of 10 micro M ADR-925 was also detected at the completion of the dexrazoxane i.v. infusion period, indicating that dexrazoxane was rapidly metabolized in vivo. A plateau level of 30 micro M ADR-925 was maintained for 4 h and then slowly decreased. The pharmacokinetics of dexrazoxane were found to be similar to other reported data in other settings and at lower doses. CONCLUSIONS: The rapid appearance of ADR-925 in plasma may make ADR-925 available to be taken up by heart tissue and bind free iron. These results suggest that the dexrazoxane intermediates are enzymatically metabolized to ADR-925 and provide a pharmacodynamic basis for the antioxidant cardioprotective activity of dexrazoxane.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Etopósido/uso terapéutico , Glicina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Razoxano/metabolismo , Anciano , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/secundario , Quimioterapia Adyuvante , Etilenodiaminas/sangre , Etopósido/administración & dosificación , Femenino , Glicina/sangre , Semivida , Humanos , Infusiones Intravenosas , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Razoxano/administración & dosificación , Razoxano/sangre
12.
Drug Metab Dispos ; 30(12): 1431-5, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12433815

RESUMEN

The enzyme kinetics of the hydrolysis of the one-ring open metabolites of the antioxidant cardioprotective agent dexrazoxane [ICRF-187; (+)-1,2-bis(3,5-dioxopiperazin-1-yl)propane] to its active metal ion binding form ADR-925 [N,N'-[(1S)-1-methyl-1,2-ethanediyl]bis[N-(2-amino-2-oxoethyl)glycine] by dihydroorotase (DHOase) has been investigated by high-performance liquid chromatography (HPLC). A spectrophotometric detection HPLC assay for dihydroorotate was also developed. Dexrazoxane is clinically used to reduce the iron-based oxygen free radical-mediated cardiotoxicity of the anticancer drug doxorubicin. DHOase was found to catalyze the ring opening of the metabolites with an apparent V(max) that was 11- and 27-fold greater than its natural substrate dihydroorotate. However, the apparent K(m) for the metabolites was 240- and 550-fold larger than for dihydroorotate. This report is the first that DHOase might be involved in the metabolism of a drug. Furosemide inhibited DHOase, but the neutral 4-chlorobenzenesulfonamide did not. Because dihydroorotate, the one-ring open metabolites, and furosemide all have a carboxylate group, it was concluded that a negative charge on the substrate strengthened binding to the positively charged active site. The presence of DHOase in the heart may explain the cardioprotective effect of dexrazoxane. Thus, dihydropyrimidinase and DHOase acting in succession on dexrazoxane and its metabolites to form ADR-925 provide a mechanism by which dexrazoxane is activated to exert its cardioprotective effects. The ADR-925 thus formed may either remove iron from the iron-doxorubicin complex, or bind free iron, thus preventing oxygen radical formation.


Asunto(s)
Cardiotónicos/metabolismo , Dihidroorotasa/metabolismo , Razoxano/metabolismo , Animales , Cardiotónicos/química , Catálisis , Cricetinae , Dihidroorotasa/química , Hidrólisis , Modelos Moleculares , Razoxano/química
13.
Cancer Chemother Pharmacol ; 50(6): 509-13, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12451479

RESUMEN

PURPOSE: Dexrazoxane is clinically used as a doxorubicin-cardioprotective agent and may act by preventing iron-based oxygen free-radical damage through the iron-chelating ability of ADR-925. The metabolism of dexrazoxane (ICRF-187) to its one-ring open hydrolysis products and its rings-opened metal-chelating product ADR-925 was determined in a rat model in order to identify the mechanism by which dexrazoxane acts. METHODS: A new fluorescence detection flow injection assay utilizing the metal-chelating dye calcein was developed to detect ADR-925 in blood plasma. Dexrazoxane and its one-ring open metabolites were determined by HPLC. RESULTS: ADR-925 was detected within 5 min of i.v. administration of dexrazoxane to rats, suggesting that dexrazoxane is rapidly metabolized in vivo. The plasma concentrations of ADR-925 exceeded those of both one-ring open intermediates at 30 min and those of dexrazoxane by 80 min and reached a maximum at 80 min, and then slowly decreased. CONCLUSIONS: The rapid appearance of ADR-925 in plasma may make ADR-925 available to be taken up by heart tissue and bind free iron. These results indicate that the one-ring open dexrazoxane intermediates are enzymatically metabolized to ADR-925 and provide a pharmacodynamic basis for the antioxidant cardioprotective activity of dexrazoxane.


Asunto(s)
Fármacos Cardiovasculares/farmacocinética , Etilenodiaminas/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Hierro/metabolismo , Razoxano/farmacocinética , Animales , Biotransformación , Quelantes , Cromatografía Líquida de Alta Presión , Fluoresceínas/metabolismo , Semivida , Indicadores y Reactivos/metabolismo , Infusiones Intravenosas , Masculino , Estructura Molecular , Ratas , Ratas Sprague-Dawley
14.
Rev. panam. salud pública ; 8(1/2): 135-9, jul.-ago. 2000. ilus
Artículo en Español | LILACS | ID: lil-276829

RESUMEN

Muchos paises de America Latina y el Caribe estan introduciendo reformas que pueden influir profundamente en la forma como se prestan los servicios de salud y en quienes los reciben. Tanto en la Cumbre de las Americas de 1994 como en la "Reunion Especial sobre Reforma del Sector de la Salud" de 1995, organizada por la Organizacion Panamericana de la Salud/Organizacion Mundial de la Salud (OPS/OMS), el Banco Interamericano de Desarrollo, el Banco Mundial y otros organismos multilaterales y bilaterales, los gobiernos de la Region decidieron apoyar la generacion de capacidad de analisis y la capacitacion en lo relativo a las reformas del sector de la salud. En consecuencia, en 1997, la OPS y la Agencia de los Estados Unidos para el Desarrollo Internacional lanzaron la "Iniciativa Regional de Reforma del Sector de la Salud en America Latina y el Caribe". Esta iniciativa tiene un financiamiento de aproximadamente US$ 10 millones hasta el ano 2002 para apoyar actividades en Bolivia, Brasil, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Paraguay, Peru y Republica Dominicana, busca promover una prestacion mas equitativa y eficaz de los servicios basicos de salud sustentando actividades regionales, y se encuentra ya en su tercer ano de implementacion


Asunto(s)
Reforma de la Atención de Salud , Planes Regionales Ambientales , Organización Panamericana de la Salud , América Latina , Región del Caribe
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA