Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699387

RESUMEN

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Masculino , Femenino , Animales , Ratones , FN-kappa B/metabolismo , Resistencia a la Insulina/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Noqueados , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Glucosa/metabolismo , Apoptosis/genética
2.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35508166

RESUMEN

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Células Madre Mesenquimatosas , Animales , Médula Ósea , Células de la Médula Ósea , Células Endoteliales , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Monocitos
3.
EMBO J ; 41(4): e106825, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35023164

RESUMEN

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Asunto(s)
Envejecimiento/fisiología , Ácido Ascórbico/farmacología , Diabetes Mellitus Experimental/prevención & control , Proteína de Retinoblastoma/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Factor de Transcripción E2F1/metabolismo , Desarrollo Embrionario/genética , Femenino , Fibroblastos/efectos de los fármacos , Técnicas de Sustitución del Gen , Células Secretoras de Insulina/patología , Ratones , Fosforilación , Embarazo , Proteína de Retinoblastoma/genética , Telómero/genética
4.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33682794

RESUMEN

Osteoclasts are specialized cells of the hematopoietic lineage that are responsible for bone resorption and play a critical role in musculoskeletal disease. JAK2 is a key mediator of cytokine and growth factor signaling; however, its role in osteoclasts in vivo has yet to be investigated. To elucidate the role of JAK2 in osteoclasts, we generated an osteoclast-specific JAK2-KO (Oc-JAK2-KO) mouse using the Cre/Lox-P system. Oc-JAK2-KO mice demonstrated marked postnatal growth restriction; however, this was not associated with significant changes in bone density, microarchitecture, or strength, indicating that the observed phenotype was not due to alterations in canonical osteoclast function. Interestingly, Oc-JAK2-KO mice had reduced osteoclast-specific expression of IGF1, suggesting a role for osteoclast-derived IGF1 in determination of body size. To directly assess the role of osteoclast-derived IGF1, we generated an osteoclast-specific IGF1-KO mouse, which showed a similar growth-restricted phenotype. Lastly, overexpression of circulating IGF1 by human transgene rescued the growth defects in Oc-JAK2-KO mice, in keeping with a causal role of IGF1 in these models. Together, our data show a potentially novel role for Oc-JAK2 and IGF1 in the determination of body size, which is independent of osteoclast resorptive function.


Asunto(s)
Tamaño Corporal , Huesos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Janus Quinasa 2/metabolismo , Osteoclastos/metabolismo , Animales , Tamaño Corporal/genética , Densidad Ósea , Resorción Ósea/metabolismo , Huesos/metabolismo , Femenino , Fémur/metabolismo , Humanos , Janus Quinasa 2/genética , Masculino , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Transducción de Señal
5.
Endocrinology ; 162(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647942

RESUMEN

Atherosclerosis is the leading cause of cardiovascular disease (CVD), with distinct sex-specific pathogenic mechanisms that are poorly understood. Aging, a major independent risk factor for atherosclerosis, correlates with a decline in circulating insulin-like growth factor-1 (IGF-1). However, the precise effects of Igf1 on atherosclerosis remain unclear. In the present study, we assessed the essential role of hepatic Igf1, the major source of circulating IGF-1, in atherogenesis. We generated hepatic Igf1-deficient atherosclerosis-prone apolipoprotein E (ApoE)-null mice (L-Igf1-/-ApoE-/-) using the Cre-loxP system driven by the Albumin promoter. Starting at 6 weeks of age, these mice and their littermate controls, separated into male and female groups, were placed on an atherogenic diet for 18 to 19 weeks. We show that hepatic Igf1-deficiency led to atheroprotection with reduced plaque macrophages in females, without significant effects in males. This protection from atherosclerosis in females was associated with increased subcutaneous adiposity and with impaired lipolysis. Moreover, this impaired lipid homeostasis was associated with disrupted adipokine secretion with reduced circulating interleukin-6 (IL-6) levels. Together, our data show that endogenous hepatic Igf1 plays a sex-specific regulatory role in atherogenesis, potentially through athero-promoting effects of adipose tissue-derived IL-6 secretion. These data provide potential novel sex-specific mechanisms in the pathogenesis of atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , Factor I del Crecimiento Similar a la Insulina/deficiencia , Hígado/metabolismo , Tejido Adiposo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Sci Rep ; 11(1): 4723, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633277

RESUMEN

Inflammation is a key contributor to atherosclerosis with macrophages playing a pivotal role through the induction of oxidative stress and cytokine/chemokine secretion. DJ1, an anti-oxidant protein, has shown to paradoxically protect against chronic and acute inflammation. However, the role of DJ1 in atherosclerosis remains elusive. To assess the role of Dj1 in atherogenesis, we generated whole-body Dj1-deficient atherosclerosis-prone Apoe null mice (Dj1-/-Apoe-/-). After 21 weeks of atherogenic diet, Dj1-/- Apoe-/-mice were protected against atherosclerosis with significantly reduced plaque macrophage content. To assess whether haematopoietic or parenchymal Dj1 contributed to atheroprotection in Dj1-deficient mice, we performed bone-marrow (BM) transplantation and show that Dj1-deficient BM contributed to their attenuation in atherosclerosis. To assess cell-autonomous role of macrophage Dj1 in atheroprotection, BM-derived macrophages from Dj1-deficient mice and Dj1-silenced macrophages were assessed in response to oxidized low-density lipoprotein (oxLDL). In both cases, there was an enhanced anti-inflammatory response which may have contributed to atheroprotection in Dj1-deficient mice. There was also an increased trend of plasma DJ-1 levels from individuals with ischemic heart disease compared to those without. Our findings indicate an atheropromoting role of Dj1 and suggests that targeting Dj1 may provide a novel therapeutic avenue for atherosclerosis treatment or prevention.


Asunto(s)
Aterosclerosis/genética , Inflamación/genética , Proteína Desglicasa DJ-1/genética , Animales , Células Cultivadas , Femenino , Eliminación de Gen , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Factores Protectores , Células RAW 264.7
7.
Mol Metab ; 39: 101006, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32360427

RESUMEN

OBJECTIVE: Discoidin domain receptor 1 (DDR1) is a collagen binding receptor tyrosine kinase implicated in atherosclerosis, fibrosis, and cancer. Our previous research showed that DDR1 could regulate smooth muscle cell trans-differentiation, fibrosis and calcification in the vascular system in cardiometabolic disease. This spectrum of activity led us to question whether DDR1 might also regulate adipose tissue fibrosis and remodeling. METHODS: We have used a diet-induced mouse model of cardiometabolic disease to determine whether DDR1 deletion impacts upon adipose tissue remodeling and metabolic dysfunction. Mice were fed a high fat diet (HFD) for 12 weeks, followed by assessment of glucose and insulin tolerance, respiration via indirect calorimetry, and brown fat activity by FDG-PET. RESULTS: Feeding HFD induced DDR1 expression in white adipose tissue, which correlated with adipose tissue expansion and fibrosis. Ddr1-/- mice fed an HFD had improved glucose tolerance, reduced body fat, and increased brown fat activity and energy expenditure compared to Ddr1+/+ littermate controls. HFD-fed DDR1-/- mice also had reduced fibrosis, smaller adipocytes with multilocular lipid droplets, and increased UCP-1 expression characteristic of beige fat formation in subcutaneous adipose tissue. In vitro, studying C3H10T1/2 cells stimulated to differentiate, DDR1 inhibition caused a shift from white to beige adipocyte differentiation, whereas DDR1 expression was increased with TGFß-mediated pro-fibrotic differentiation. CONCLUSION: This study is the first to identify a role for DDR1 as a driver of adipose tissue fibrosis and suppressor of beneficial beige fat formation.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Receptor con Dominio Discoidina 1/genética , Metabolismo Energético , Eliminación de Gen , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Animales , Calorimetría , Dieta Alta en Grasa/efectos adversos , Receptor con Dominio Discoidina 1/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Fibrosis , Inmunohistoquímica , Síndrome Metabólico/diagnóstico , Ratones , Ratones Noqueados , Tomografía de Emisión de Positrones , ARN Mensajero/genética , Grasa Subcutánea/metabolismo , Tomografía Computarizada por Rayos X
8.
Sci Rep ; 7(1): 7653, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794431

RESUMEN

During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2-/-) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2-/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2-/- mice. Peritoneal macrophages from M-JAK2-/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.


Asunto(s)
Dieta Alta en Grasa , Inflamación/etiología , Janus Quinasa 2/deficiencia , Macrófagos/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Expresión Génica , Hipertrofia , Inflamación/metabolismo , Inflamación/patología , Resistencia a la Insulina/genética , Grasa Intraabdominal/metabolismo , Hígado/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo
9.
Nat Commun ; 8: 14360, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165007

RESUMEN

Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess.


Asunto(s)
Adipocitos/fisiología , Quinasa 1 de Adhesión Focal/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Células 3T3-L1 , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Adiposidad/efectos de los fármacos , Adiposidad/genética , Adulto , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Quinasa 1 de Adhesión Focal/genética , Humanos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Persona de Mediana Edad , Obesidad/etiología , Obesidad/fisiopatología , PPAR gamma/agonistas , Cultivo Primario de Células , Rosiglitazona , Transducción de Señal/fisiología , Tiazolidinedionas/farmacología
10.
J Biol Chem ; 292(9): 3789-3799, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28100771

RESUMEN

Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Proliferación Celular , Hígado Graso/metabolismo , Eliminación de Gen , Hepatocitos/metabolismo , Inflamación , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
11.
Methods Mol Biol ; 1388: 75-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27033072

RESUMEN

PTEN plays an important role in diabetes pathogenesis not only as a key negative regulator of the PI3K/Akt pathway required for insulin action, but also via its role in other cell processes required to maintain metabolic homeostasis. We describe the generation of tissue-specific PTEN knockout mice and models of both type 1 and type 2 diabetes, which we have found useful for the study of diabetes pathogenesis. We also outline common methods suitable for the characterization of glucose homeostasis in rodent models, including techniques to measure beta cell function and insulin sensitivity.


Asunto(s)
Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Homeostasis , Humanos , Insulina/metabolismo , Ratones
12.
Nat Commun ; 6: 7415, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077864

RESUMEN

Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Oncogénicas/genética , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Línea Celular , Supervivencia Celular , Diabetes Mellitus/genética , Dieta Alta en Grasa , Glucosa/metabolismo , Glucólisis/genética , Homeostasis/genética , Immunoblotting , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Obesidad/genética , Estrés Oxidativo , Consumo de Oxígeno , Proteína Desglicasa DJ-1
13.
Diabetologia ; 58(4): 819-27, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25563725

RESUMEN

AIMS/HYPOTHESIS: Nutrient overabundance and diminished physical activity underlie the epidemic of obesity and its consequences of insulin resistance and type 2 diabetes. These same phenomena, obesity and insulin resistance, are also observed in mammals as they ready themselves for the nutrient deprivation of winter, yet their plasma glucose does not rise. Given the role of silent information regulator 2 (Sir2) and its mammalian orthologue, Sirt1, in survival and life extension during energy deprivation, we hypothesised that enhancing its activity may reduce the insensible energy loss engendered by hyperglycaemia and glycosuria. METHODS: At 8 weeks of age, db/db and db/m mice were randomised to receive the SIRT1 activator SRT3025 milled in chow (3.18 g/kg) or regular chow and followed for a further 12 weeks. RESULTS: When compared with vehicle, SIRT1 activation greatly improved glycaemic control, augmented plasma insulin concentrations, increased pancreatic islet beta cell mass and elevated hepatic expression of the beta cell growth factor, betatrophin in db/db mice. Despite the dramatic reduction in hyperglycaemia, db/db mice displayed worsening insulin resistance, diminished physical activity and further weight gain. These findings along with reduced food intake and reduction in body temperature resembled torpor and hibernation. By contrast, SIRT1 activation conferred only minimal changes in non-diabetic db/m mice. CONCLUSIONS/INTERPRETATION: While reducing hyperglycaemia and promoting beta cell expansion, enhancing the activity of SIRT1 facilitates a phenotypic change in a db/db mouse model of diabetes to one that more closely resembles the physiological state of torpor or hibernation.


Asunto(s)
Anilidas/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/prevención & control , Activadores de Enzimas/farmacología , Hipoglucemiantes/farmacología , Obesidad/tratamiento farmacológico , Sirtuina 1/metabolismo , Tiazoles/farmacología , Letargo/efectos de los fármacos , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Activación Enzimática , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/sangre , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones Mutantes , Obesidad/sangre , Obesidad/enzimología , Obesidad/genética , Obesidad/fisiopatología , Hormonas Peptídicas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
14.
Diabetes ; 64(1): 147-57, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25092678

RESUMEN

An aberrant increase in circulating catabolic hormone glucagon contributes to type 2 diabetes pathogenesis. However, mechanisms regulating glucagon secretion and α-cell mass are not well understood. In this study, we aimed to demonstrate that phosphatidylinositol 3-kinase (PI3K) signaling is an important regulator of α-cell function. Mice with deletion of PTEN, a negative regulator of this pathway, in α-cells show reduced circulating glucagon levels and attenuated l-arginine-stimulated glucagon secretion both in vivo and in vitro. This hypoglucagonemic state is maintained after high-fat-diet feeding, leading to reduced expression of hepatic glycogenolytic and gluconeogenic genes. These beneficial effects protected high-fat diet-fed mice against hyperglycemia and insulin resistance. The data demonstrate an inhibitory role of PI3K signaling on α-cell function and provide experimental evidence for enhancing α-cell PI3K signaling for diabetes treatment.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/fisiología , Glucagón/sangre , Resistencia a la Insulina/fisiología , Fosfohidrolasa PTEN/genética , Animales , Arginina/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa , Femenino , Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología
15.
Diabetologia ; 57(12): 2555-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25249236

RESUMEN

AIMS/HYPOTHESIS: Diabetes mellitus is characterised by beta cell loss and alpha cell expansion. Analogues of glucagon-like peptide-1 (GLP-1) are used therapeutically to antagonise these processes; thus, we hypothesised that the related cell cycle regulators retinoblastoma protein (Rb) and p107 were involved in GLP-1 action. METHODS: We used small interfering RNA and adenoviruses to manipulate Rb and p107 expression in insulinoma and alpha-TC cell lines. In vivo we examined pancreas-specific Rb knockout, whole-body p107 knockout and Rb/p107 double-knockout mice. RESULTS: Rb, but not p107, was downregulated in response to the GLP-1 analogue, exendin-4, in both alpha and beta cells. Intriguingly, this resulted in opposite outcomes of cell cycle arrest in alpha cells but proliferation in beta cells. Overexpression of Rb in alpha and beta cells abolished or attenuated the effects of exendin-4 supporting the important role of Rb in GLP-1 modulation of cell cycling. Similarly, in vivo, Rb, but not p107, deficiency was required for the beta cell proliferative response to exendin-4. Consistent with this finding, Rb, but not p107, was suppressed in islets from humans with diabetes, suggesting the importance of Rb regulation for the compensatory proliferation that occurs under insulin resistant conditions. Finally, while p107 alone did not have an essential role in islet homeostasis, when combined with Rb deletion, its absence potentiated apoptosis of both alpha and beta cells resulting in glucose intolerance and diminished islet mass with ageing. CONCLUSIONS/INTERPRETATION: We found a central role of Rb in the dual effects of GLP-1 in alpha and beta cells. Our findings highlight unique contributions of individual Rb family members to islet cell proliferation and survival.


Asunto(s)
Ciclo Celular/fisiología , Supervivencia Celular/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Exenatida , Células Secretoras de Glucagón/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Noqueados , Péptidos/farmacología , Proteína de Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Ponzoñas/farmacología
16.
Diabetologia ; 57(9): 1889-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981769

RESUMEN

AIMS/HYPOTHESIS: Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS: We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS: Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION: HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Páncreas/metabolismo , Páncreas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Mutantes , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética
17.
Nat Med ; 20(5): 484-92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24747746

RESUMEN

Inflammation has a critical role in the development of insulin resistance. Recent evidence points to a contribution by the central nervous system in the modulation of peripheral inflammation through the anti-inflammatory reflex. However, the importance of this phenomenon remains elusive in type 2 diabetes pathogenesis. Here we show that rat insulin-2 promoter (Rip)-mediated deletion of Pten, a gene encoding a negative regulator of PI3K signaling, led to activation of the cholinergic anti-inflammatory pathway that is mediated by M2 activated macrophages in peripheral tissues. As such, Rip-cre(+) Pten(flox/flox) mice showed lower systemic inflammation and greater insulin sensitivity under basal conditions compared to littermate controls, which were abolished when the mice were treated with an acetylcholine receptor antagonist or when macrophages were depleted. After feeding with a high-fat diet, the Pten-deleted mice remained markedly insulin sensitive, which correlated with massive subcutaneous fat expansion. They also exhibited more adipogenesis with M2 macrophage infiltration, both of which were abolished after disruption of the anti-inflammatory efferent pathway by left vagotomy. In summary, we show that Pten expression in Rip(+) neurons has a critical role in diabetes pathogenesis through mediating the anti-inflammatory reflex.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Inflamación/metabolismo , Insulina/genética , Fosfohidrolasa PTEN/genética , Animales , Antiinflamatorios/administración & dosificación , Sistema Nervioso Central/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Alta en Grasa , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Insulina/metabolismo , Resistencia a la Insulina/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosfohidrolasa PTEN/metabolismo , Regiones Promotoras Genéticas , Ratas , Receptores Muscarínicos/administración & dosificación , Eliminación de Secuencia , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 110(36): 14723-8, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23946427

RESUMEN

Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic ß-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased ß-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and ß-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to ß-cell ratio, leading to improved glucose homeostasis and protection against diabetes.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteína de Retinoblastoma/metabolismo , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Femenino , Células Secretoras de Glucagón/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Proteína de Retinoblastoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Diabetes ; 61(7): 1708-18, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22498697

RESUMEN

Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic ß-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)-driven Cre-loxP recombination system to specifically delete FAK in pancreatic ß-cells. These RIPcre(+)fak(fl/fl) mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced ß-cell viability and proliferation resulting in decreased ß-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal-related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient ß-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca(2+) influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic ß-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Calcio/metabolismo , Caspasa 3/biosíntesis , Supervivencia Celular , Exocitosis , Femenino , Quinasa 1 de Adhesión Focal/genética , Intolerancia a la Glucosa/genética , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Paxillin/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Talina/metabolismo , Vesículas Transportadoras/metabolismo
20.
J Endocrinol ; 210(3): 285-92, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21719578

RESUMEN

Cytochrome c is one of the central mediators of the mitochondrial or the intrinsic apoptotic pathway. Mice harboring a 'knock-in' mutation of cytochrome c, impairing only its apoptotic function, have permitted studies on the essential role of cytochrome c-mediated apoptosis in various tissue homeostasis. To this end, we examined the role of cytochrome c in pancreatic ß-cells under homeostatic conditions and in diabetes models, including those induced by streptozotocin (STZ) and c-Myc. Previous studies have shown that both STZ- and c-Myc-induced ß-cell apoptosis is mediated through caspase-3 activation; however, the precise mechanism in these modes of cell death was not characterized. The results of our study show that lack of functional cytochrome c does not affect glucose homeostasis or pancreatic ß-cell mass under basal conditions. Moreover, the cytochrome c-mediated intrinsic apoptotic pathway is required for neither STZ- nor c-Myc-induced ß-cell death. We also observed that the extrinsic apoptotic pathway mediated through caspase-8 was not essential in c-Myc-induced ß-cell destruction. These findings suggest that cytochrome c is not required for STZ-induced ß-cell apoptosis and, together with the caspase-8-mediated extrinsic pathway, plays a redundant role in c-Myc-induced ß-cell apoptosis.


Asunto(s)
Apoptosis/fisiología , Citocromos c/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Animales , Apoptosis/genética , Caspasa 8/metabolismo , Citocromos c/deficiencia , Citocromos c/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Técnicas de Sustitución del Gen , Genes myc , Glucosa/metabolismo , Homeostasis , Ratones , Ratones Mutantes , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA