Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Am J Clin Exp Urol ; 9(6): 479-488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993267

RESUMEN

Prostate cancer (PC) development involves epigenetic DNA methylation changes that occur in the tumor. However, distinct DNA methylation changes have been previously found to encompass a widespread cancer field defect involving normal prostate tissue. In the current study, we analyzed a series of DNA methylation field markers to determine if they predict the presence of PC in urine. Urine samples were collected from patients undergoing prostate biopsy with biopsy-proven PC (90), and without PC (77). From the urine pellet, methylated DNA was quantified across several previously identified CpG island regions near the caveolin 1 (CAV1), even-skipped homeobox 1 (EVX1), fibroblast growth factor 1 (FGF1), natural cytotoxicity triggering receptor 2 (NCR2) and phospholipase A and acyltransferase 3 (PLA2G16) genes using bisulfite pyrosequencing. Univariate and multivariate analyses were performed. Urine cell pellets show significant increases in methylation in four of the markers from patients with PC compared to those without PC including EVX1 12.2 vs. 7.7%, CAV1 15.7 vs. 10.36%, FGF1 12.0 vs. 7.1%, and PLA2G16 12.2 vs. 8.3% [all P<0.01]. Area under the ROC Curve (AUCs) were generated for EXV1 (0.74, Odds ratios (OR) 1.09; 95% confidence intervals (CI) 0.94-1.25, CAV1 (0.72, OR 1.18; 95% CI 1.09-1.28) and PLA2G16 (0.76, OR 1.35; 95% CI 1.199-1.51). In combination, a two-marker assay performs better than prostate specific antigen (PSA), AUC 0.77 vs. PSA AUC of 0.6 (P = 0.01) with the lowest error. In addition, FGF1 distinguished between grade group 1 (GG1) and higher grade cancers (P<0.03). In conclusion, applying methylation of field defect loci to urine samples provides a novel approach to distinguish patients with and without cancer.

3.
Mol Cancer Ther ; 19(11): 2278-2287, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943543

RESUMEN

The initiation of androgen-deprivation therapy (ADT) induces susceptibilities in prostate cancer cells that make them vulnerable to synergistic treatment and enhanced cell death. Senescence results in cell-cycle arrest, but cells remain viable. In this study, we investigated the mechanisms by which prostate cancer cells undergo senescence in response to ADT, and determined whether an FDA-approved antidiabetic drug metformin has a synergistic effect with ADT in prostate cancer both in vitro and in vivo Our results show that longer term exposure to ADT induced senescence associated with p16INK4a and/or p27kip2 induction. The activation of PI3K/AKT and inactivation of AMPK in senescent cells resulted in mTORC1 activation. In addition, the antiapoptotic protein XIAP expression was increased in response to ADT. The addition of metformin following ADT induced apoptosis, attenuated mTOR activation, reduced senescent cell number in vitro, and inhibited tumor growth in prostate cancer patient-derived xenograft models. This study suggests that combining ADT and metformin may be a feasible therapeutic approach to remove persistent prostate cancer cells after ADT.


Asunto(s)
Andrógenos/metabolismo , Metabolismo Energético/efectos de los fármacos , Metformina/farmacología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Mutaciones Letales Sintéticas , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular Tumoral , Senescencia Celular/genética , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Clin Epigenetics ; 11(1): 168, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779677

RESUMEN

BACKGROUND: An epigenetic field of cancer susceptibility exists for prostate cancer (PC) that gives rise to multifocal disease in the peripheral prostate. In previous work, genome-wide DNA methylation profiling identified altered regions in the normal prostate tissue of men with PC. In the current multicenter study, we examined the predictive strength of a panel of loci to detect cancer presence and grade in patients with negative biopsy tissue. RESULTS: Four centers contributed benign prostate biopsy tissues blocks from 129 subjects that were either tumor associated (TA, Grade Group [GG] ≥ 2, n = 77) or non-tumor associated (NTA, n = 52). Biopsies were analyzed using pyrosequencing for DNA methylation encompassing CpG loci near CAV1, EVX1, FGF1, NCR2, PLA2G16, and SPAG4 and methylation differences were detected within all gene regions (p < 0.05). A multiplex regression model for biomarker performance incorporating a gene combination discriminated TA from NTA tissues (area under the curve [AUC] 0.747, p = 0.004). A multiplex model incorporating all the above genes and clinical information (PSA, age) identified patients with GG ≥ 2 PC (AUC 0.815, p < 0.0001). In patients with cancer, increased variation in gene methylation levels occurs between biopsies across the prostate. CONCLUSIONS: A widespread epigenetic field defect is utilized to detect GG ≥ 2 PC in patients with histologically negative biopsies. These alterations in non-tumor cells display increased heterogeneity of methylation extent and are spatially distant from tumor foci. These findings have the potential to decrease the need for repeated prostate biopsy.


Asunto(s)
Biomarcadores de Tumor/genética , Metilación de ADN , Neoplasias de la Próstata/diagnóstico , Análisis de Secuencia de ADN/métodos , Anciano , Biopsia , Detección Precoz del Cáncer , Epigénesis Genética , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
5.
Hypertension ; 74(4): 957-966, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31476900

RESUMEN

Persistent pulmonary hypertension of the newborn (PPHN) is a failure of pulmonary vascular resistance to decline at birth rapidly. One principal mechanism implicated in PPHN development is mitochondrial oxidative stress. Expression and activity of mitochondrial SOD2 (superoxide dismutase) are decreased in PPHN; however, the mechanism remains unknown. Recently, OLA1 (Obg-like ATPase-1) was shown to act as a critical regulator of proteins controlling cell response to stress including Hsp70, an obligate chaperone for SOD2. Here, we investigated whether OLA1 is causally linked to PPHN. Compared with controls, SOD2 expression is reduced in distal-pulmonary arteries (PAs) from patients with PPHN and fetal-lamb models. Disruptions of the SOD2 gene reproduced PPHN phenotypes, manifested by elevated right ventricular systolic pressure, PA-endothelial cells apoptosis, and PA-smooth muscle cells proliferation. Analyses of SOD2 protein dynamics revealed higher ubiquitinated-SOD2 protein levels in PPHN-lambs, suggesting dysregulated protein ubiquitination. OLA1 controls multiple proteostatic mechanisms and is overexpressed in response to stress. We demonstrated that OLA1 acts as a molecular chaperone, and its activity is induced by stress. Strikingly, OLA1 expression is decreased in distal-PAs from PPHN-patients and fetal-lambs. OLA1 deficiency enhanced CHIP affinity for Hsp70-SOD2 complexes, facilitating SOD2 degradation. Consequently, mitochondrial H2O2 formation is impaired, leading to XIAP (X-linked inhibitor of apoptosis) overexpression that suppresses caspase activity in PA-smooth muscle cells, allowing them to survive and proliferate, contributing to PA remodeling. In-vivo, ola1-/- downregulated SOD2 expression, induced distal-PA remodeling, and right ventricular hypertrophy. We conclude that decreased OLA1 expression accounts for SOD2 downregulation and, therefore, a therapeutic target in PPHN treatments.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Pulmón/metabolismo , Síndrome de Circulación Fetal Persistente/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Superóxido Dismutasa/metabolismo , Ubiquitina/metabolismo , Animales , Apoptosis , Regulación hacia Abajo , Femenino , Hemodinámica/fisiología , Humanos , Peróxido de Hidrógeno/metabolismo , Recién Nacido , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ovinos , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
6.
PLoS One ; 14(6): e0218950, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31233548

RESUMEN

BACKGROUND: Prostate cancer (PC) is a multifocal disease. DNA methylation alterations are not restricted to the immediate peritumor environment, but spatially widespread in the adjacent and distant histologically normal prostate tissues. In the current study, we utilized high-throughput methylation arrays to identify epigenetic changes in the urine from men with and without cancer. DESIGN, SETTING, AND PARTICIPANTS: DNA urine samples were enriched for methylated fragments using MBD methyl-binding antibodies and applied to high density CytoScanHD arrays. Significant loci were validated using quantitative pyrosequencing and binary logistic regression modeling applied to urine sample analyses in a training (n = 83) and validation approach (n = 84). Methylation alterations in prostate tissues using pyrosequencing at the PLA2G16 locus were examined in 38 histologically normal specimens from men with (TA, n = 26) and without (NTA, n = 12) cancer and correlated to gene expression. RESULTS: Methylation microarrays identified 3,986 loci showing significantly altered methylation in the urine samples from patients with PC compared to those without (TA vs NTA; p<0.01). These loci were then compared against subjects with their prostates removed to exclude non-prostate cell markers yielding 196 significant regions. Multiple CpGs adjacent to PLA2G16 CpG island showed increased methylation in TA compared to NTA (p<0.01) in a large validation study of urine samples. The predictive accuracy of PLA2G16 methylation at CG2 showed the highest predictive value at 0.8 (odds ratio, 1.37; 95% confidence interval, 1.16-1.62; p<0.001). Using a probability cutoff of 0.065, the sensitivity and specificity of the multivariate model was 92% and 35%. When histologically normal prostate tissues/biopsies from patients with PC (TA) were compared to subjects without cancer, significant hypermethylation of PLA2G16 was noted (odds ratio, 1.35; 95% confidence interval, 1.07-1.71; p = 0.01). CONCLUSION: PLA2G16 methylation defines an extensive field defect in histologically normal prostate tissue associated with PC. PLA2G16 methylation in urine and prostate tissues can detect the presence of PC.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Metilación de ADN/genética , Fosfolipasas A2 Calcio-Independiente/genética , Fosfolipasas A2 Calcio-Independiente/orina , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/orina , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/orina , Adulto , Anciano , Anciano de 80 o más Años , Detección Precoz del Cáncer/métodos , Epigénesis Genética/genética , Humanos , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Próstata/patología , Sensibilidad y Especificidad
7.
Asian J Urol ; 6(1): 57-64, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30775249

RESUMEN

Androgen deprivation therapy (ADT) has been the standard of care for the last 75 years in metastatic hormone sensitive prostate cancer (PCa). However, this approach is rarely curative. Recent clinical trials have demonstrated that ADT combined with other agents, notably docetaxel and abiraterone, lead to improved survival. The mechanisms surrounding this improved cancer outcomes are incompletely defined. The response of cancer cells to ADT includes apoptosis and cell death, but a significant fraction remains viable. Our laboratory has demonstrated both in vitro and in vivo that cellular senescence occurs in a subset of these cells. Cellular senescence is a phenotype characterized by cell cycle arrest, senescence-associated ß-galactosidase (SA-ß-gal), and a hypermetabolic state. Positive features of cellular senescence include growth arrest and immune stimulation, although persistence may release cytokines and growth factors that are detrimental. Senescent tumor cells generate a catabolic state with increased glycolysis, protein turnover and other metabolic changes that represent targets for drugs, like metformin, to be applied in a synthetic lethal approach. This review examines the response to ADT and the putative role of cellular senescence as a biomarker and therapeutic target in this context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA