Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775150

RESUMEN

This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.


Asunto(s)
Anemia de Diamond-Blackfan , Terapia Genética , Vectores Genéticos , Células Madre Hematopoyéticas , Lentivirus , Proteínas Ribosómicas , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Humanos , Terapia Genética/métodos , Lentivirus/genética , Proteínas Ribosómicas/genética , Vectores Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Ratones , Masculino , Femenino , Ribosomas/metabolismo , Ribosomas/genética , Regiones Promotoras Genéticas , Mutación , Trasplante de Células Madre Hematopoyéticas/métodos
2.
J Physiol Biochem ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787512

RESUMEN

Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis. METHODS: Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta. RESULTS: Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes. CONCLUSION: Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.

4.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535170

RESUMEN

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Asunto(s)
Enfermedad de Huntington , Células-Madre Neurales , Humanos , Animales , Ratones , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/metabolismo , Cuerpo Estriado/metabolismo , Diferenciación Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animales de Enfermedad
6.
PLoS One ; 18(4): e0284816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093844

RESUMEN

Growth Arrest-Specific 1 (Gas1) is a pleiotropic protein with different functions, in the adult kidney Gas1 acts as an endogenous inhibitor of cell proliferation but it is also necessary for the maintenance and proliferation of Renal Progenitor Cells (RPC) during early development, thus it fulfills important functions in the adult kidney. However, it is not known whether or not Gas1 is expressed during postnatal development, a critical stage for renal maturation. For this reason, the main objective of this work was to characterize the expression pattern of Gas1 in the different regions of the kidney by immunofluorescence and Western blot analysis during the postnatal development of the rat. We found that Gas1 is present and has a differential expression pattern in the various regions of the nephron during postnatal development. We observed that the highest levels of expression of Gas1 occur in the adult, however, Gas1 is also expressed in RPC and interestingly, the expression of RPC markers such as the Neural cell adhesion molecule (NCAM) and Cluster of differentiation 24 (CD24) were found to have an inverse pattern of expression to Gas1 (decreases as the kidney matures) during postnatal renal maturation, this indicates a role for Gas1 in the regulation of renal cell proliferation at this stage of development.


Asunto(s)
Proteínas de Ciclo Celular , Nefronas , Ratas , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Nefronas/metabolismo , Células Madre/metabolismo , Células Epiteliales/metabolismo , Proteínas Ligadas a GPI/metabolismo
7.
Biochem Biophys Rep ; 33: 101430, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36714540

RESUMEN

Glioblastoma (GBM) is a very aggressive tumor that presents vascularization, necrosis and is resistant to chemotherapy and radiotherapy. Current treatments are not effective eradicating GBM, thus, there is an urgent need to develop novel therapeutic strategies against GBM. AZD5363, AZD8542, curcumin and resveratrol, are widely studied for the treatment of cancer and in the present study we explored the effects of the administration of combined treatments with AZD5363, AZD8542, curcumin or resveratrol on human GBM cells. We found that the combined treatments with AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol inhibit the PI3K/AKT and SHH survival pathways by decreasing the activity of AKT, the reduction of the expression of SMO, pP70S6k, pS6k, GLI1, p21 and p27, and the activation of caspase-3 as a marker of apoptosis. These results provide evidence that the combined treatments AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol have the potential to be an interesting option against GBM.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36099968

RESUMEN

Inflammatory response in the Central Nervous System (CNS) induced by psychostimulants seems to be a crucial factor in the development and maintenance of drug addiction. The ventral hippocampus (vHp) is part of the reward system involved in substance addiction and expresses abundant G protein-coupled receptor 55 (GPR55). This receptor modulates the inflammatory response in vitro and in vivo, but there is no information regarding its anti-inflammatory effects and its impact on psychostimulant consumption. The aim of the present study was to investigate whether vHp GPR55 activation prevents both the inflammatory response induced by amphetamine (AMPH) in the vHp and the AMPH-induced conditioned place preference (A-CPP). Wistar adult male rats with a bilateral cannula into the vHp or intact males were subjected to A-CPP (5 mg/kg). Upon the completion of A-CPP, the vHp was dissected to evaluate IL-1ß and IL-6 expression through RT-PCR, Western blot and immunofluorescence. Our results reveal that AMPH induces both A-CPP and an increase of IL-1ß and IL-6 in the vHp. The GPR55 agonist lysophosphatidylinositol (LPI, 10 µM) infused into the vHp prevented A-CPP and the AMPH-induced IL-1ß increase. CID 16020046 (CID, 10 µM), a selective GPR55 antagonist, abolished LPI effects. To evaluate the effect of the inflammatory response, lipopolysaccharide (LPS, 5 µg/µl) was infused bilaterally into the vHp during A-CPP acquisition. LPS strengthened A-CPP and increased IL-1ß/IL-6 mRNA and protein levels in the vHp. LPS also increased CD68, Iba1, GFAP and vimentin expression. All LPS-induced effects were blocked by LPI. Our results suggest that GPR55 activation in the vHp prevents A-CPP while decreasing the local neuro-inflammatory response. These findings indicate that vHp GPR55 is a crucial factor in preventing the rewarding effects of AMPH due to its capacity to interfere with proinflammatory responses in the vHp.


Asunto(s)
Anfetamina , Estimulantes del Sistema Nervioso Central , Ratas , Masculino , Animales , Anfetamina/farmacología , Lipopolisacáridos/farmacología , Vimentina/metabolismo , Vimentina/farmacología , Interleucina-6/metabolismo , Ratas Wistar , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/metabolismo , Hipocampo/metabolismo , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antiinflamatorios/farmacología , Receptores de Cannabinoides/metabolismo
9.
J Mol Histol ; 53(6): 925-946, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272046

RESUMEN

The Growth Arrest-Specific protein 1 (Gas1) has been recently described in kidney as an endogenous inhibitor of cell proliferation in mesangial cells and with an important role in the maintenance of nephron progenitor cells. Furthermore, the expression of Gas1 was demonstrated in NCAM + progenitor parietal cells of Bowman's capsule. Thus, the aim of this study was to analyze the expression of Gas1 in the collecting ducts (CD) of healthy rats and to examine whether high glucose levels modify its expression during the early stages of diabetes in STZ-treated rats. Immunofluorescence reveals that principal cells AQP2 + express Gas1 in both healthy and diabetic conditions. Western blot from enriched fractions of medullary CD suggests that diabetes promotes the increase of Gas1. AQP2 + cells are also positive for the expression of CD24 and CD1133 in diabetic rats. In addition, diabetes modifies the cell morphology in the CD and favors the increase of principal cells (AQP2+/Gas1+), induces a significant decrease of intercalated cells (V-ATPase+/Gas1-) and the presence of intermediate cells (Gas1+/V-ATPase+) which express both principal and intercalated cell markers. The expression of Gas1 in the distal tubules was also determined by immunofluorescence, western blot and ELISA in diabetic rats. The results identify Gas1 as a specific marker of principal cells in healthy and diabetic rats and suggest that diabetes promotes the expression of Gas1. Gas1 may have an important role in the maintenance and differentiation to principal cells in the CD during early stages of diabetes.


Asunto(s)
Proteínas de Ciclo Celular , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Túbulos Renales Colectores , Animales , Ratas , Adenosina Trifosfatasas/metabolismo , Acuaporina 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Riñón/metabolismo , Proteínas de Ciclo Celular/metabolismo
10.
J Pathol ; 258(3): 312-324, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36148647

RESUMEN

Despite the well-known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin-positive cells were submitted to liver damage induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1-2 days of a DDC-supplemented diet, followed by a signaling switch-off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2-MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro-restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19-positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte-specific EGFR activity acts as a key player in the crosstalk between parenchymal and non-parenchymal hepatic cells, promoting the pro-inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hepatopatías , Regeneración Hepática , Albúminas/metabolismo , Albúminas/farmacología , Animales , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Descarboxilasas de Aminoácido-L-Aromático/farmacología , Molécula de Adhesión Celular Epitelial/metabolismo , Molécula de Adhesión Celular Epitelial/farmacología , Receptores ErbB/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Hepatopatías/patología , Regeneración Hepática/fisiología , Ratones , Ratones Transgénicos , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo
11.
CRISPR J ; 5(3): 422-434, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35686982

RESUMEN

Knockout mice for human disease-causing genes provide valuable models in which new therapeutic approaches can be tested. Electroporation of genome editing tools into zygotes, in vitro or within oviducts, allows for the generation of targeted mutations in a shorter time. We have generated mouse models deficient in genes involved in metabolic rare diseases (Primary Hyperoxaluria Type 1 Pyruvate Kinase Deficiency) or in a tumor suppressor gene (Rasa1). Pairs of guide RNAs were designed to generate controlled deletions that led to the absence of protein. In vitro or in vivo ribonucleoprotein (RNP) electroporation rendered more than 90% and 30% edited newborn animals, respectively. Mice lines with edited alleles were established and disease hallmarks have been verified in the three models that showed a high consistency of results and validating RNP electroporation into zygotes as an efficient technique for disease modeling without the need to outsource to external facilities.


Asunto(s)
Edición Génica , Cigoto , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Ratones , Ratones Noqueados , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Cigoto/metabolismo
12.
J Clin Invest ; 132(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671096

RESUMEN

Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage-associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D-NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D-NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA.


Asunto(s)
Anemia de Fanconi , Animales , Antígenos CD34 , Anemia de Fanconi/genética , Células Madre Hematopoyéticas , Ligandos , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Regulación hacia Arriba
13.
Front Physiol ; 13: 848261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418876

RESUMEN

Today gene therapy is a real therapeutic option to address inherited hematological diseases that could be beneficial for thousands of patients worldwide. Currently, gene therapy is used to treat different monogenic hematological pathologies, including several red blood cell diseases such as ß-thalassemia, sickle cell disease and pyruvate kinase deficiency. This approach is based on addition gene therapy, which consists of the correction of hematopoietic stem cells (HSCs) using lentiviral vectors, which integrate a corrected version of the altered gene. Lentivirally-corrected HSCs generate healthy cells that compensate for the deficiency caused by genetic mutations. Despite its successful results, this approach lacks both control of the integration of the transgene into the genome and endogenous regulation of the therapeutic gene, both of which are important aspects that might be a cause for concern. To overcome these limitations, gene editing is able to correct the altered gene through more precise and safer approaches. Cheap and easy-to-design gene editing tools, such as the CRISPR/Cas9 system, allow the specific correction of the altered gene without affecting the rest of the genome. Inherited erythroid diseases, such as thalassemia, sickle cell disease and Pyruvate Kinase Deficiency, have been the test bed for these gene editing strategies, and promising results are currently being seen. CRISPR/Cas9 system has been successfully used to manipulate globin regulation to re-activate fetal globin chains in adult red blood cells and to compensate for hemoglobin defects. Knock-in at the mutated locus to express the therapeutic gene under the endogenous gene regulatory region has also been accomplished successfully. Thanks to the lessons learned from previous lentiviral gene therapy research and trials, gene editing for red blood cell diseases is rapidly moving from its proof-of-concept to its first exciting results in the clinic. Indeed, patients suffering from ß-thalassemia and sickle cell disease have already been successfully treated with gene editing, which will hopefully inspire the use of gene editing to cure erythroid disorders and many other inherited diseases in the near future.

14.
Curr Opin Chem Biol ; 66: 102098, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34768088

RESUMEN

The cellular prion protein (PrPC) is a metal-binding biomolecule that can interact with different protein partners involved in pivotal physiological processes, such as neurogenesis and neuronal plasticity. Recent studies profile copper and PrPC as important players in the pathological mechanisms of Alzheimer's disease and cancer. Although the copper-PrPC interaction has been characterized extensively, the role of the metal ion in the physiological and pathological roles of PrPC has been barely explored. In this article, we discuss how copper binding and proteolytic processing may impact the ability of PrPC to recruit protein partners for its functional roles. The importance to dissect the role of copper-PrPC interactions in health and disease is also underscored.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias , Química Bioinorgánica , Cobre/metabolismo , Humanos , Proteínas Priónicas/química
15.
Mol Ther Methods Clin Dev ; 22: 66-75, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34485595

RESUMEN

Difficulties in the collection of hematopoietic stem and progenitor cells (HSPCs) from Fanconi anemia (FA) patients have limited the gene therapy in this disease. We have investigated (ClinicalTrials.gov, NCT02931071) the safety and efficacy of filgrastim and plerixafor for mobilization of HSPCs and collection by leukapheresis in FA patients. Nine of eleven enrolled patients mobilized beyond the threshold level of 5 CD34+ cells/µL required to initiate apheresis. A median of 21.8 CD34+ cells/µL was reached at the peak of mobilization. Significantly, the oldest patients (15 and 16 years old) were the only ones who did not reach that threshold. A median of 4.27 million CD34+ cells/kg was collected in 2 or 3 aphereses. These numbers were markedly decreased to 1.1 million CD34+ cells/kg after immunoselection, probably because of weak expression of the CD34 antigen. However, these numbers were sufficient to facilitate the engraftment of corrected HSPCs in non-conditioned patients. No procedure-associated serious adverse events were observed. Mobilization of CD34+ cells correlated with younger age, higher leukocyte counts and hemoglobin values, lower mean corpuscular volume, and higher proportion of CD34+ cells in bone marrow (BM). All these values offer crucial information for the enrollment of FA patients for gene therapy protocols.

16.
Mol Ther Methods Clin Dev ; 22: 237-248, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34485608

RESUMEN

Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell (P KLR) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the PKLR endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.

17.
Endocrinol Diabetes Metab ; 4(4): e00289, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34505421

RESUMEN

Glioblastoma (GB) is the most common and aggressive primary brain tumour in adult humans. Therapeutic resistance and tumour recurrence after surgical removal contribute to poor prognosis for glioblastoma patients. Men are known to be more likely than women to develop an aggressive form of GB, and differences in sex steroids have emerged as a leading explanation for this finding. Studies indicate that the metabolism and proliferation of GB-derived cells are increased by sex steroids, the expression of androgen receptors (ARs) and the synthesis of androgens and oestrogens, suggesting that these hormones have a role in the tumour pathogenesis. The expression of aromatase, the enzyme that converts androgens to oestrogens, has been reported in glial cells and GB cell lines. Thus, it was necessary to test whether the steroidogenic enzymes involved in androgen synthesis are expressed in GB cells. Therefore, here, we investigated the expression of four key enzymes involved in androgen synthesis in human-derived GB cells. U87 cells were cultured in Dulbecco's modified Eagle medium plus foetal bovine serum and antibiotics on slides for immunocytochemistry or immunofluorescence. U87, LN229 and C6 cells were also cultured in multi-well chambers to obtain proteins for Western blotting. We used primary antibodies against 3ß-hydroxysteroid dehydrogenase (3ß-HSD), 17α-hydroxilase/17,20-lyase (P450c17), 17ß-hydroxysteroid dehydrogenase (17ß-HSD) and 5α-reductase. Immunocytochemistry, and immunofluorescence results revealed that glioblastoma cells express 3ß-HSD, P450c17, 17ß-HSD and 5α-reductase proteins in their cytoplasm. Moreover, Western blot analyses revealed bands corresponding to the molecular weight of these four enzymes in the three GB cell lines. Thus, glioblastoma cells have the key enzymatic machinery necessary to synthesize androgens, and these enzymes might be useful targets for new therapeutic approaches.


Asunto(s)
Andrógenos , Glioblastoma , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Adulto , Andrógenos/metabolismo , Colestenona 5 alfa-Reductasa , Femenino , Humanos , Masculino , Oxidorreductasas , Esteroide 17-alfa-Hidroxilasa/metabolismo
18.
Mol Ther Methods Clin Dev ; 22: 350-359, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514027

RESUMEN

Pyruvate kinase deficiency (PKD) is a rare autosomal recessive disorder caused by mutations in the PKLR gene. PKD is characterized by non-spherocytic hemolytic anemia of variable severity and may be fatal in some cases during early childhood. Although not considered the standard of care, allogeneic stem cell transplantation has been shown as a potentially curative treatment, limited by donor availability, toxicity, and incomplete engraftment. Preclinical studies were conducted to define conditions to enable consistent therapeutic reversal, which were based on our previous data on lentiviral gene therapy for PKD. Improvement of erythroid parameters was identified by the presence of 20%-30% healthy donor cells. A minimum vector copy number (VCN) of 0.2-0.3 was required to correct PKD when corrected cells were transplanted in a mouse model for PKD. Biodistribution and pharmacokinetics studies, with the aim of conducting a global gene therapy clinical trial for PKD patients (RP-L301-0119), demonstrated that genetically corrected cells do not confer additional side effects. Moreover, a clinically compatible transduction protocol with mobilized peripheral blood CD34+ cells was optimized, thus facilitating the efficient transduction on human cells capable of repopulating the hematopoiesis of immunodeficient mice. We established conditions for a curative lentiviral vector gene therapy protocol for PKD.

19.
Stem Cell Res Ther ; 12(1): 124, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579367

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) constitute one of the cell types most frequently used in cell therapy. Although several studies have shown the efficacy of these cells to modulate inflammation in different animal models, the results obtained in human clinical trials have been more modest. Here, we aimed at improving the therapeutic properties of MSCs by inducing a transient expression of two molecules that could enhance two different properties of these cells. With the purpose of improving MSC migration towards inflamed sites, we induced a transient expression of the C-X-C chemokine receptor type 4 (CXCR4). Additionally, to augment the anti-inflammatory properties of MSCs, a transient expression of the anti-inflammatory cytokine, interleukin 10 (IL10), was also induced. METHODS: Human adipose tissue-derived MSCs were transfected with messenger RNAs carrying the codon-optimized versions of CXCR4 and/or IL10. mRNA-transfected MSCs were then studied, first to evaluate whether the characteristic phenotype of MSCs was modified. Additionally, in vitro and also in vivo studies in an LPS-induced inflamed pad model were conducted to evaluate the impact associated to the transient expression of CXCR4 and/or IL10 in MSCs. RESULTS: Transfection of MSCs with CXCR4 and/or IL10 mRNAs induced a transient expression of these molecules without modifying the characteristic phenotype of MSCs. In vitro studies then revealed that the ectopic expression of CXCR4 significantly enhanced the migration of MSCs towards SDF-1, while an increased immunosuppression was associated with the ectopic expression of IL10. Finally, in vivo experiments showed that the co-expression of CXCR4 and IL10 increased the homing of MSCs into inflamed pads and induced an enhanced anti-inflammatory effect, compared to wild-type MSCs. CONCLUSIONS: Our results demonstrate that the transient co-expression of CXCR4 and IL10 enhances the therapeutic potential of MSCs in a local inflammation mouse model, suggesting that these mRNA-modified cells may constitute a new step in the development of more efficient cell therapies for the treatment of inflammatory diseases.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Movimiento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Expresión Génica Ectópica , Interleucina-10/genética , Células Madre Mesenquimatosas/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal
20.
Neuro Oncol ; 23(4): 599-610, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33249487

RESUMEN

BACKGROUND: Glioblastomas (GBMs) are the main primary brain tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for unknown reasons. One hypothesis is the proximity of these tumors to the cerebrospinal fluid (CSF) and its chemical cues that can regulate cellular phenotype. We therefore investigated the role of CSF on GBM gene expression and the role of a CSF-induced gene, SERPINA3, in GBM malignancy in vitro and in vivo. METHODS: We utilized human CSF and GBM brain tumor-initiating cells (BTICs). We determined the impact of SERPINA3 expression in glioma patients using The Cancer Genome Atlas (TCGA) database. SERPINA3 expression changes were evaluated at mRNA and protein levels. The effects of knockdown (KD) and overexpression (OE) of SERPINA3 on cell migration, viability and cell proliferation were evaluated. Stem cell characteristics on KD cells were evaluated by differentiation and colony formation experiments. Tumor growth was studied by intracranial and flank injections. RESULTS: GBM-CSF increased BTIC migration accompanied by upregulation of the SERPINA3 gene. In patient samples and TCGA data, we observed SERPINA3 to correlate directly with brain tumor grade and indirectly with GBM patient survival. SERPINA3 KD induced a decrease in cell proliferation, migration, invasion, and stem cell characteristics, while SERPINA3 OE increased cell migration. In vivo, SERPINA3 KD BTICs showed increased survival in a murine model. CONCLUSIONS: SERPINA3 plays a key role in GBM malignancy and its inhibition results in a better outcome using GBM preclinical models.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Madre Neoplásicas , alfa 1-Antiquimotripsina , Adulto , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Ratones , Serpinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA