Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioorg Chem ; 145: 107228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422592

RESUMEN

In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteína Tirosina Quinasa CSK/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Familia-src Quinasas , Relación Estructura-Actividad , Pirimidinas/química , Pirimidinas/farmacología , Pirazoles/química , Pirazoles/farmacología
2.
Chemistry ; 30(15): e202303986, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38221408

RESUMEN

Antimicrobial peptide amphiphiles (PAs) are a promising class of molecules that can disrupt the bacterial membrane or act as drug nanocarriers. In this study, we prepared 33 PAs to establish supramolecular structure-activity relationships. We studied the morphology and activity of the nanostructures against different Gram-positive and Gram-negative bacterial strains (such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii). Next, we used principal component analysis (PCA) to determine the key contributors to activity. We found that for S. aureus, the zeta potential was the major contributor to the activity while Gram-negative bacteria were more influenced by the partition coefficient (LogP) with the following order P. aeruginosa>E. coli>A. baumannii. We also performed a study of the mechanism of action of selected PAs on the bacterial membrane assessing the membrane permeability and depolarization, changes in zeta potential and overall integrity. We studied the toxicity of the nanostructures against mammalian cells. Finally, we performed an in vivo study using the wax moth larvae to determine the therapeutic efficacy of the active PAs. This study shows cationic PA nanostructures can be an intriguing platform for the development of nanoantibacterials.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Antiinfecciosos/farmacología , Péptidos , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Mamíferos
3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834474

RESUMEN

Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative activities. In addition, the urgent need for selective and potent novel anticancer agents represents a major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold, which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M, VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range, i.e., 0.3-24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2 inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular docking studies were performed to explore the binding mode and mechanism of such compounds on protein targets and mapped with reference ligands. The results of our studies indicate that the newly discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential for anticancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Relación Estructura-Actividad , Receptores ErbB/metabolismo , Proliferación Celular , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Mutación , Antineoplásicos/farmacología , Antineoplásicos/química , Antimetabolitos/farmacología , Pirimidinas/farmacología , Pirimidinas/química , Estructura Molecular , Línea Celular Tumoral
4.
mBio ; 11(5)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873765

RESUMEN

Chlamydia trachomatis is an obligate intracellular bacterium that undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms, the elementary body (EB) and reticulate body (RB), each of which expresses its own specialized repertoire of proteins. Both primary (EB to RB) and secondary (RB to EB) differentiations require protein turnover, and we hypothesize that proteases are critical for mediating differentiation. The Clp protease system is well conserved in bacteria and important for protein turnover. Minimally, the system relies on a serine protease subunit, ClpP, and an AAA+ ATPase, such as ClpX, that recognizes and unfolds substrates for ClpP degradation. In Chlamydia, ClpX is encoded within an operon 3' to clpP2 We present evidence that the chlamydial ClpX and ClpP2 orthologs are essential to organism viability and development. We demonstrate here that chlamydial ClpX is a functional ATPase and forms the expected homohexamer in vitro Overexpression of a ClpX mutant lacking ATPase activity had a limited impact on DNA replication or secondary differentiation but, nonetheless, reduced EB viability with observable defects in EB morphology noted. Conversely, overexpression of a catalytically inactive ClpP2 mutant significantly impacted developmental cycle progression by reducing the overall number of organisms. Blocking clpP2X transcription using CRISPR interference led to a decrease in bacterial growth, and this effect was complemented in trans by a plasmid copy of clpP2 Taken together, our data indicate that ClpX and the associated ClpP2 serve distinct functions in chlamydial developmental cycle progression and differentiation.IMPORTANCEChlamydia trachomatis is the leading cause of infectious blindness globally and the most reported bacterial sexually transmitted infection both domestically and internationally. Given the economic burden, the lack of an approved vaccine, and the use of broad-spectrum antibiotics for treatment of infections, an understanding of chlamydial growth and development is critical for the advancement of novel targeted antibiotics. The Clp proteins comprise an important and conserved protease system in bacteria. Our work highlights the importance of the chlamydial Clp proteins to this clinically important bacterium. Additionally, our study implicates the Clp system playing an integral role in chlamydial developmental cycle progression, which may help establish models of how Chlamydia spp. and other bacteria progress through their respective developmental cycles. Our work also contributes to a growing body of Clp-specific research that underscores the importance and versatility of this system throughout bacterial evolution and further validates Clp proteins as drug targets.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/genética , Endopeptidasa Clp/genética , Serina Endopeptidasas/genética , Adenosina Trifosfatasas/genética , Animales , Proteínas Bacterianas/metabolismo , Línea Celular , Chlamydia trachomatis/metabolismo , Endopeptidasa Clp/metabolismo , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Ratones , Viabilidad Microbiana/genética , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA