Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
ACS Infect Dis ; 10(8): 3052-3058, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39054961

RESUMEN

Effective molecular strategies are needed to target pathogenic bacteria that thrive and proliferate within mammalian cells, a sanctuary inaccessible to many therapeutics. Herein, we present a class of cationic amphiphilic polyproline helices (CAPHs) with a rigid placement of the cationic moiety on the polyproline helix and assess the role of configuration of the unnatural proline residues making up the CAPHs. By shortening the distance between the guanidinium side chain and the proline backbone of the agents, a notable increase in cellular uptake and antibacterial activity was observed, whereas changing the configuration of the moieties on the pyrrolidine ring from cis to trans resulted in more modest increases. When the combination of these two activities was evaluated, the more rigid CAPHs were exceptionally effective at eradicating intracellular methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella infections within macrophages, significantly exceeding the clearance with the parent CAPH.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Péptidos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Péptidos/química , Péptidos/farmacología , Macrófagos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Cationes/química , Cationes/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Humanos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
3.
ACS Infect Dis ; 7(7): 1969-1984, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33765392

RESUMEN

Neisseria gonorrhoeae is an urgent threat to public health in the United States and around the world. Many of the current classes of antibiotics to treat N. gonorrhoeae infection are quickly becoming obsolete due to increased rates of resistance. Thus, there is a critical need for alternative antimicrobial targets and new chemical entities. Our team has repurposed the FDA-approved carbonic anhydrase inhibitor scaffold of acetazolamide to target N. gonorrhoeae and the bacteria's essential carbonic anhydrase, NgCA. This study established both structure-activity and structure-property relationships that contribute to both antimicrobial activity and NgCA activity. This ultimately led to molecules 20 and 23, which displayed minimum inhibitory concentration values as low as 0.25 µg/mL equating to an 8- to 16-fold improvement in antigonococcal activity compared to acetazolamide. These analogues were determined to be bacteriostatic against the pathogen and likely on-target against NgCA. Additionally, they did not exhibit any detrimental effects in cellular toxicity assays against both a human endocervical (End1/E6E7) cell line or colorectal adenocarcinoma cell line (Caco-2) at concentrations up to 128 µg/mL. Taken together, this study presents a class of antigonococcal agents with the potential to be advanced for further evaluation in N. gonorrhoeae infection models.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Neisseria gonorrhoeae , Acetazolamida/farmacología , Células CACO-2 , Inhibidores de Anhidrasa Carbónica/farmacología , Humanos , Relación Estructura-Actividad
4.
ACS Infect Dis ; 6(11): 2979-2993, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33085463

RESUMEN

Cis-prenyltransferases such as undecaprenyl diphosphate synthase (UPPS) and decaprenyl diphosphate synthase (DPPS) are essential enzymes in bacteria and are involved in cell wall biosynthesis. UPPS and DPPS are absent in the human genome, so they are of interest as targets for antibiotic development. Here, we screened a library of 750 compounds from National Cancer Institute Diversity Set V for the inhibition of Mycobacterium tuberculosis DPPS and found 17 hits, and then IC50s were determined using dose-response curves. Compounds were tested for growth inhibition against a panel of bacteria, for in vivo activity in a Staphylococcus aureus/Caenorhabditis elegans model, and for mammalian cell toxicity. The most active DPPS inhibitor was the dicarboxylic acid redoxal (compound 10), which also inhibited undecaprenyl diphosphate synthase (UPPS) as well as farnesyl diphosphate synthase. 10 was active against S. aureus, Clostridiodes difficile, Bacillus anthracis Sterne, and Bacillus subtilis, and there was a 3.4-fold increase in IC50 on addition of a rescue agent, undecaprenyl monophosphate. We found that 10 was also a weak protonophore uncoupler, leading to the idea that it targets both isoprenoid biosynthesis and the proton motive force. In an S. aureus/C. elegans in vivo model, 10 reduced the S. aureus burden 3 times more effectively than did ampicillin.


Asunto(s)
Dimetilaliltranstransferasa , Animales , Antibacterianos/farmacología , Caenorhabditis elegans , Dimetilaliltranstransferasa/genética , Inhibidores Enzimáticos/farmacología , Humanos , Staphylococcus aureus
5.
Int J Antimicrob Agents ; 56(6): 106188, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33045352

RESUMEN

Clostridioides difficile infection (CDI) is a principal cause of hospital-acquired infections and fatalities worldwide. The need for new, more potent anticlostridial agents is far from being met. Drug repurposing can be utilized as a rapid and cost-efficient method of drug development. The current study was conducted to evaluate the activity of ronidazole, a veterinary antiprotozoal drug, as a potential treatment for CDI. Ronidazole inhibited the growth of clinical C. difficile isolates (including NAP1 and toxigenic strains) at a very low concentration (0.125 µg/mL) and showed superior killing kinetics compared with metronidazole, an anticlostridial agent from the same chemical category. In addition, ronidazole did not inhibit growth of several commensal organisms naturally present in the human intestine that play a protective role in preventing CDIs. Furthermore, ronidazole was found to be non-toxic to human gut cells and permeated a monolayer of colonic epithelial cells (Caco-2) at a slower rate than metronidazole. Finally, ronidazole outperformed metronidazole when both were tested at a dose of 1 mg/kg daily in a mouse model of CDI. Overall, ronidazole merits further investigation as a potential treatment for CDIs.


Asunto(s)
Antibacterianos/uso terapéutico , Antiprotozoarios/uso terapéutico , Clostridioides difficile/efectos de los fármacos , Reposicionamiento de Medicamentos , Enterocolitis Seudomembranosa/tratamiento farmacológico , Ronidazol/uso terapéutico , Animales , Células CACO-2 , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Metronidazol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología , Drogas Veterinarias/uso terapéutico
6.
Bioorg Chem ; 104: 104183, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32971415

RESUMEN

A selected series of racemic α-methylene-γ-butyrolactones (AMGBL) synthesized via allylboration or allylindation reactions were screened against methicillin-resistant Staphylococcus aureus (MRSA) USA300. Unlike natural AMGBLs, such as parthenolide, synthetic analogs bearing aryl moieties at the ß- and γ-positions are potent against MRSA. The most potent molecules were comparable to vancomycin and linezolid, the drugs of the last resort for MRSA infections, in their effectiveness with minimum inhibitory concentrations (MICs) ranging from 3.0 to 5.2 µM. These lactones also exhibited potent antibacterial activity against other clinically important multidrug-resistant Gram-positive bacteria (except enterococci), while also showing high tolerability to mammalian cells. Several of these molecules surpassed vancomycin in their rapid killing of the high MRSA inoculum (2 h vs 12 h) in a standard time-kill kinetics assay, with compounds 1l and 1m significantly reducing the intracellular burden of MRSA by about 98-99%, at low concentrations. Additionally, the compounds surpassed vancomycin in inhibiting staphylococcal protease production, indicating that synthetic methylene lactones warrant further investigations as promising anti-MRSA candidates.


Asunto(s)
4-Butirolactona/análogos & derivados , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , 4-Butirolactona/síntesis química , 4-Butirolactona/química , 4-Butirolactona/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
7.
Biomaterials ; 262: 120344, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32905902

RESUMEN

Bacterial pathogens residing in host macrophages in intracellular infections are hard to eradicate because traditional antibiotics do not readily enter the cells or get eliminated via efflux pumps. To overcome this challenge, we developed a new particle formulation with a size amenable to selective macrophage uptake, loaded with two antibacterial agents - pexiganan and silver (Ag) nanoparticles. Here, pexiganan was loaded in 600 nm poly(lactic-co-glycolic acid) (PLGA) particles (NP), and the particle surface was modified with an iron-tannic acid supramolecular complex (pTA) that help attach Ag nanoparticles. PLGA particles coated with Ag (NP-pTA-Ag) were taken up by macrophages, but not by non-phagocytic cells, such as fibroblasts, reducing non-specific toxicity associated with Ag nanoparticles. NP-pTA-Ag loaded with pexiganan (Pex@NP-pTA-Ag) showed more potent antibacterial activity against various intracellular pathogens than NP-pTA-Ag or Pex@NP (pexiganan-loaded NP with no Ag), suggesting a collaborative function between pexiganan and Ag nanoparticles. Mouse whole-body imaging demonstrated that, upon intravenous injection, NP-pTA-Ag quickly accumulated in the liver and spleen, where intracellular bacteria tend to reside. These results support that Pex@NP-pTA-Ag is a promising strategy for the treatment of intracellular bacterial infection.


Asunto(s)
Infecciones Bacterianas , Nanopartículas del Metal , Nanopartículas , Animales , Antibacterianos/farmacología , Macrófagos , Ratones , Plata
8.
J Cell Sci ; 133(17)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32788232

RESUMEN

Neutrophils rely on glycolysis for energy production. How mitochondria regulate neutrophil function is not fully understood. Here, we report that mitochondrial outer membrane protein Mitofusin 2 (MFN2) regulates neutrophil homeostasis and chemotaxis in vivoMfn2-deficient neutrophils are released from the hematopoietic tissue, trapped in the vasculature in zebrafish embryos, and not capable of chemotaxis. Consistent with this, human neutrophil-like cells that are deficient for MFN2 fail to arrest on activated endothelium under sheer stress or perform chemotaxis on 2D surfaces. Deletion of MFN2 results in a significant reduction of neutrophil infiltration to the inflamed peritoneal cavity in mice. Mechanistically, MFN2-deficient neutrophil-like cells display disrupted mitochondria-ER interaction, heightened intracellular Ca2+ levels and elevated Rac activation after chemokine stimulation. Restoring a mitochondria-ER tether rescues the abnormal Ca2+ levels, Rac hyperactivation and chemotaxis defect resulting from MFN2 depletion. Finally, inhibition of Rac activation restores chemotaxis in MFN2-deficient neutrophils. Taken together, we have identified that MFN2 regulates neutrophil migration via maintaining the mitochondria-ER interaction to suppress Rac activation, and uncovered a previously unrecognized role of MFN2 in regulating cell migration and the actin cytoskeleton.This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Neutrófilos , Pez Cebra , Citoesqueleto de Actina , Adhesivos , Animales , Movimiento Celular , Ratones
9.
J Org Chem ; 85(11): 7468-7475, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32425046

RESUMEN

Intracellular pathogens can thrive within mammalian cells and are inaccessible to many antimicrobial agents. Herein, we present a facile method of enhancing the cell penetrating and antibacterial properties of cationic amphiphilic polyproline helices (CAPHs) with modifications to the hydrophobic moiety at the N-terminus. These altered CAPHs display superior cell penetration within macrophage cells, and in some cases, minimal cytotoxicity. Furthermore, one CAPH, Pentyl-P14 exhibited excellent antibacterial activity against multiple strains of pathogenic bacteria and promoted the clearance of intracellular Shigella within macrophages.


Asunto(s)
Antibacterianos , Péptidos , Animales , Antibacterianos/farmacología , Bacterias , Cationes , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Estructura Secundaria de Proteína
10.
Sci Rep ; 10(1): 5966, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249833

RESUMEN

Clostridioides difficile is the most common cause of healthcare-associated diarrhea. Infection of the gastrointestinal tract with this Gram-positive, obligate anaerobe can lead to potentially life-threatening conditions in the antibiotic-treated populace. New therapeutics are urgently needed to treat this infection and prevent its recurrence. Here, we screened two libraries from the National Cancer Institute, namely, the natural product set III library (117 compounds) and the approved oncology drugs set V library (114 compounds), against C. difficile. In the two libraries screened, 17 compounds from the natural product set III library and 7 compounds from the approved oncology drugs set V library were found to exhibit anticlostridial activity. The most potent FDA-approved drugs (mitomycin C and mithramycin A) and a promising natural product (aureomycin) were further screened against 20 clinical isolates of C. difficile. The anticancer drugs, mitomycin C (MIC50 = 0.25 µg/ml) and mithramycin A (MIC50 = 0.015 µg/ml), and the naturally derived tetracycline derivative, aureomycin (MIC50 = 0.06 µg/ml), exhibited potent activity against C. difficile strains. Mithramycin A and aureomycin were further found to inhibit toxin production by this pathogen. Given their efficacy, these compounds can provide a quick supplement to current treatment to address the unmet needs in treating C. difficile infection and preventing its recurrence.


Asunto(s)
Antibacterianos/farmacología , Productos Biológicos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Antibacterianos/uso terapéutico , Productos Biológicos/uso terapéutico , Diarrea/tratamiento farmacológico , Aprobación de Drogas , Evaluación Preclínica de Medicamentos , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana
11.
Sci Rep ; 10(1): 5624, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221399

RESUMEN

Clostridium difficile infections (CDIs) are a growing health concern worldwide. The recalcitrance of C. difficile spores to currently available treatments and concomitant virulence of vegetative cells has made it imperative to develop newer modalities of treatment. Aryl-alkyl-lysines have been earlier reported to possess antimicrobial activity against pathogenic bacteria, fungi, and parasites. Their broad spectrum of activity is attributed to their ability to infiltrate microbial membranes. Herein, we report the activity of aryl-alkyl-lysines against C. difficile and associated pathogens. The most active compound NCK-10 displayed activity comparable to the clinically-used antibiotic vancomycin. Indeed, against certain C. difficile strains, NCK-10 was more active than vancomycin in vitro. Additionally, NCK-10 exhibited limited permeation across the intestinal tract as assessed via a Caco-2 bidirectional permeability assay. Overall, the findings suggest aryl-alkyl-lysines warrant further investigation as novel agents to treat CDI.


Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Lisina/farmacología , Células CACO-2 , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Vancomicina/farmacología
12.
Eur J Med Chem ; 185: 111830, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31718945

RESUMEN

Compounds with high lipophilic properties are often associated with bad physicochemical properties, triggering many off-targets, and less likely to pass clinical trials. Two metabolically stable phenylthiazole antibiotic scaffolds having notable high lipophilic characters, one with alkoxy side chain and the other one with alkynyl moiety, were derivatized by inserting a cyclic amine at the lipophilic tail with the objective of improving physicochemical properties and the overall pharmacokinetic behavior. Only alkynyl derivatives with 4- or 5-membered rings showed remarkable antibacterial activity. The azetidine-containing compound 8 was the most effective and it revealed a potent antibacterial effect against 15 multi-drug resistant (MDR)-Gram positive pathogens including Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis and enterococci. Compound 8 was also highly effective in clearing 99.7% of the intracellular methicillin-resistant S. aureus (MRSA) harbored inside macrophages. In addition to the remarkable enhancement in aqueous solubility, the in vivo pharmacokinetic study in rats indicated that compound 8 can penetrate gut cells and reach plasma at a therapeutic concentration within 15 min and maintain effective plasma concentration for around 12 h. Interestingly, the main potential metabolite (compound 9) was also active as an antibacterial agent with potent antibiofilm activity.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus/efectos de los fármacos , Tiazoles/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Células CACO-2 , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Macrófagos/efectos de los fármacos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
13.
Eur J Med Chem ; 182: 111593, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31446245

RESUMEN

A novel series of phenylthiazoles bearing cyclic amines at the phenyl-4 position was prepared with the objective of decreasing lipophilicity and improving the overall physicochemical properties and pharmacokinetic profile of the compounds. Briefly, the piperidine ring (compounds 10 and 12) provided the best ring size in terms of antibacterial activity when tested against 16 multidrug-resistant clinical isolates. Both compounds were superior to vancomycin in the ability to eliminate methicillin-resistant Staphylococcus aureus (MRSA), residing within infected macrophages and to disrupt mature MRSA biofilm. Additionally, compounds 10 and 12 exhibited a fast-bactericidal mode of action in vitro. Furthermore, the new derivatives were 160-times more soluble in water than the previous lead compound 1b. Consequently, compound 10 was orally bioavailable with a highly-acceptable pharmacokinetic profile in vivo that exhibited a half-life of 4 h and achieved a maximum plasma concentration that exceeded the minimum inhibitory concentration (MIC) values against all tested bacterial isolates.


Asunto(s)
Aminas/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Obesidad/tratamiento farmacológico , Tiazoles/farmacología , Aminas/química , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Obesidad/microbiología , Ratas , Ratas Sprague-Dawley , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
14.
Eur J Med Chem ; 175: 49-62, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075608

RESUMEN

Antibiotic resistance remains a pressing medical challenge for which novel antibacterial agents are urgently needed. The phenylthiazole scaffold represents a promising platform to develop novel antibacterial agents for drug-resistant infections. However, enhancing the physicochemical profile of this class of compounds remains a challenging endeavor to address to successfully translate these molecules into novel antibacterial agents in the clinic. We extended our understanding of the SAR of the phenylthiazoles' lipophilic moiety by exploring its ability to accommodate a hydrophilic group or a smaller sized hetero-ring with the objective of enhancing the physicochemical properties of this class of novel antimicrobials. Overall, the 2-thienyl derivative 20 and the hydroxyl-containing derivative 31 emerged as the most promising antibacterial agents inhibiting growth of drug-resistant Staphylococcus aureus at a concentration as low as 1 µg/mL. Remarkably, compound 20 suppressed bacterial undecaprenyl pyrophosphatase (UppP), the molecular target of the phenylthiazole compounds, in a sub nano-molar concentration range (almost 20,000 times more potent than the lead compounds 1a and 1b). Compound 31 possessed the most balanced antibacterial and physicochemical profile. The compound exhibited rapid bactericidal activity against S. aureus, and successfully cleared intracellular S. aureus within infected macrophages. Furthermore, insertion of the hydroxyl group enhanced the aqueous solubility of 31 by more than 50-fold relative to the first-generation lead 1c.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lípidos/química , Pirofosfatasas/antagonistas & inhibidores , Tiazoles/química , Tiazoles/farmacología , Animales , Antibacterianos/farmacología , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular , Cromatografía Liquida , Macrófagos/microbiología , Espectrometría de Masas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-Actividad
15.
ACS Infect Dis ; 4(9): 1300-1305, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29979033

RESUMEN

A number of pathogenic bacteria reproduce inside mammalian cells and are thus inaccessible to many antimicrobial drugs. Herein, we present a facile method to a focused library of antibacterial agents known as cationic amphiphilic polyproline helices (CAPHs). We identified three CAPHs from the library with superior cell penetration within macrophages and excellent antibacterial action against both Gram-positive and Gram-negative bacteria. These cell-penetrating antibacterial CAPHs have specific subcellular localizations that allow for targeting of pathogenic bacteria at their intracellular niches, a unique feature that promotes the successful clearance of intracellular pathogens ( Salmonella, Shigella, and Listeria) residing within macrophages. Furthermore, the selected CAPHs also significantly reduced bacterial infections in an in vivo model of Caenorhabditis elegans, with minimal in vivo toxicity.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Bacterianas/microbiología , Péptidos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Infecciones Bacterianas/tratamiento farmacológico , Caenorhabditis elegans , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Péptidos/química , Bibliotecas de Moléculas Pequeñas/química
16.
Sci Rep ; 7(1): 6953, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761101

RESUMEN

Antimicrobial peptides (AMPs) represent a promising therapeutic alternative for the treatment of antibiotic-resistant bacterial infections. The present study investigates the antimicrobial activity of new, rationally-designed derivatives of a short α-helical peptide, RR. From the peptides designed, RR4 and its D-enantiomer, D-RR4, emerged as the most potent analogues with a more than 32-fold improvement in antimicrobial activity observed against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Remarkably, D-RR4 demonstrated potent activity against colistin-resistant strains of P. aeruginosa (isolated from cystic fibrosis patients) indicating a potential therapeutic advantage of this peptide over several AMPs. In contrast to many natural AMPs, D-RR4 retained its activity under challenging physiological conditions (high salts, serum, and acidic pH). Furthermore, D-RR4 was more capable of disrupting P. aeruginosa and A. baumannii biofilms when compared to conventional antibiotics. Of note, D-RR4 was able to bind to lipopolysaccharide to reduce the endotoxin-induced proinflammatory cytokine response in macrophages. Finally, D-RR4 protected Caenorhabditis elegans from lethal infections of P. aeruginosa and A. baumannii and enhanced the activity of colistin in vivo against colistin-resistant P. aeruginosa.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/química , Biopelículas/efectos de los fármacos , Caenorhabditis elegans/microbiología , Colistina/farmacología , Fibrosis Quística/microbiología , Diseño de Fármacos , Estabilidad de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología
17.
Eur J Med Chem ; 139: 665-673, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28846967

RESUMEN

The promising antibacterial potency of arylthiazole antibiotics is offset by their limited activity against intracellular bacteria (namely methicillin-resistant Staphylococcus aureus (MRSA)), similar to many clinically-approved antibiotics. The failure to target these hidden pathogens is due to the compounds' lack of proper characteristics to accumulate intracellularly. Fine tuning of the size and polar-surface-area of the linking heteroaromatic ring provided a new series of 5-thiazolylarylthiazoles with balanced properties that allow them to sufficiently cross and accumulate inside macrophages infected with MRSA. The most promising compound 4i exhibited rapid bactericidal activity, good metabolic stability and produced over 80% reduction of intracellular MRSA in infected macrophages.


Asunto(s)
Antibacterianos/farmacología , Pared Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Tiazoles/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Bacillus subtilis/citología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Línea Celular , Pared Celular/metabolismo , Relación Dosis-Respuesta a Droga , Macrófagos/microbiología , Staphylococcus aureus Resistente a Meticilina/citología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Ratones , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
18.
J Control Release ; 267: 133-143, 2017 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797580

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infection is a serious threat to the public health. MRSA is particularly difficult to treat when it invades host cells and survive inside the cells. Although vancomycin is active against MRSA, it does not effectively kill intracellular MRSA due to the molecular size and polarity that limit its cellular uptake. To overcome poor intracellular delivery of vancomycin, we developed a particle formulation (PpZEV) based on a blend of polymers with distinct functions: (i) poly(lactic-co-glycolic acid) (PLGA, P) serving as the main delivery platform, (ii) polyethylene glycol-PLGA conjugate (PEG-PLGA, p) to help maintain an appropriate level of polarity for timely release of vancomycin, (iii) Eudragit E100 (a copolymer based on dimethylaminoethyl methacrylate, butyl methacrylate and methyl methacrylate, E) to enhance vancomycin encapsulation, and (iv) a chitosan derivative called ZWC (Z) to trigger pH-sensitive drug release. PpZEV NPs were preferentially taken up by the macrophages due to its size (500-1000nm) and facilitated vancomycin delivery to the intracellular pathogens. Accordingly, PpZEV NPs showed better antimicrobial activity than free vancomycin against intracellular MRSA and other intracellular pathogens. When administered intravenously, PpZEV NPs rapidly accumulated in the liver and spleen, the target organs of intracellular infection. Therefore, PpZEV NPs is a promising carrier of vancomycin for the treatment of intracellular MRSA infection.


Asunto(s)
Antibacterianos/administración & dosificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nanopartículas/administración & dosificación , Vancomicina/administración & dosificación , Acrilatos/administración & dosificación , Acrilatos/química , Animales , Antibacterianos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Femenino , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo , Nanopartículas/química , Nanopartículas/ultraestructura , Poliésteres/administración & dosificación , Poliésteres/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polímeros/administración & dosificación , Polímeros/química , Bazo/metabolismo , Vancomicina/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-28149831

RESUMEN

Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin's potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin's antifungal activity-mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections.


Asunto(s)
Antifúngicos/farmacología , Auranofina/farmacología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Biopelículas/efectos de los fármacos , Reposicionamiento de Medicamentos , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Haploinsuficiencia , Humanos , Potenciales de la Membrana , Pruebas de Sensibilidad Microbiana , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Biochim Biophys Acta Gen Subj ; 1861(4): 848-859, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28132897

RESUMEN

BACKGROUND: The worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS). METHODS: Antibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated. RESULTS: P14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens. CONCLUSIONS: The potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections. GENERAL SIGNIFICANCE: This study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Kanamicina/farmacología , Péptidos/farmacología , Animales , Infecciones Bacterianas/tratamiento farmacológico , Caenorhabditis elegans/microbiología , Línea Celular , Membrana Celular/microbiología , Humanos , Pruebas de Sensibilidad Microbiana/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA