Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 13(1): 20817, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012350

RESUMEN

Long-read sequencing allows analyses of single nucleic-acid molecules and produces sequences in the order of tens to hundreds kilobases. Its application to whole-genome analyses allows identification of complex genomic structural-variants (SVs) with unprecedented resolution. SV identification, however, requires complex computational methods, based on either read-depth or intra- and inter-alignment signatures approaches, which are limited by size or type of SVs. Moreover, most currently available tools only detect germline variants, thus requiring separate computation of sample pairs for comparative analyses. To overcome these limits, we developed a novel tool (Germline And SOmatic structuraL varIants detectioN and gEnotyping; GASOLINE) that groups SV signatures using a sophisticated clustering procedure based on a modified reciprocal overlap criterion, and is designed to identify germline SVs, from single samples, and somatic SVs from paired test and control samples. GASOLINE is a collection of Perl, R and Fortran codes, it analyzes aligned data in BAM format and produces VCF files with statistically significant somatic SVs. Germline or somatic analysis of 30[Formula: see text] sequencing coverage experiments requires 4-5 h with 20 threads. GASOLINE outperformed currently available methods in the detection of both germline and somatic SVs in synthetic and real long-reads datasets. Notably, when applied on a pair of metastatic melanoma and matched-normal sample, GASOLINE identified five genuine somatic SVs that were missed using five different sequencing technologies and state-of-the art SV calling approaches. Thus, GASOLINE identifies germline and somatic SVs with unprecedented accuracy and resolution, outperforming currently available state-of-the-art WGS long-reads computational methods.


Asunto(s)
Gasolina , Programas Informáticos , Humanos , Análisis de Secuencia , Genoma , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma Humano , Análisis de Secuencia de ADN/métodos
2.
Front Immunol ; 14: 1230050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744356

RESUMEN

Background: The NLRP3 inflammasome integrates several danger signals into the activation of innate immunity and inflammation by secreting IL-1ß and IL-18. Most published data relate to the NLRP3 inflammasome in immune cells, but some reports claim similar roles in parenchymal, namely epithelial, cells. For example, podocytes, epithelial cells critical for the maintenance of kidney filtration, have been reported to express NLRP3 and to release IL-ß in diabetic kidney disease, contributing to filtration barrier dysfunction and kidney injury. We questioned this and hence performed independent verification experiments. Methods: We studied the expression of inflammasome components in human and mouse kidneys and human podocytes using single-cell transcriptome analysis. Human podocytes were exposed to NLRP3 inflammasome agonists in vitro and we induced diabetes in mice with a podocyte-specific expression of the Muckle-Wells variant of NLRP3, leading to overactivation of the Nlrp3 inflammasome (Nphs2Cre;Nlrp3A350V) versus wildtype controls. Phenotype analysis included deep learning-based glomerular and podocyte morphometry, tissue clearing, and STED microscopy of the glomerular filtration barrier. The Nlrp3 inflammasome was blocked by feeding ß-hydroxy-butyrate. Results: Single-cell transcriptome analysis did not support relevant NLRP3 expression in parenchymal cells of the kidney. The same applied to primary human podocytes in which NLRP3 agonists did not induce IL-1ß or IL-18 secretion. Diabetes induced identical glomerulomegaly in wildtype and Nphs2Cre;Nlrp3A350V mice but hyperfiltration-induced podocyte loss was attenuated and podocytes were larger in Nphs2Cre;Nlrp3A350V mice, an effect reversible with feeding the NLRP3 inflammasome antagonist ß-hydroxy-butyrate. Ultrastructural analysis of the slit diaphragm was genotype-independent hence albuminuria was identical. Conclusion: Podocytes express low amounts of the NLRP3 inflammasome, if at all, and do not produce IL-1ß and IL-18, not even upon introduction of the A350V Muckle-Wells NLRP3 variant and upon induction of podocyte stress. NLRP3-mediated glomerular inflammation is limited to immune cells.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina , Diabetes Mellitus Experimental , Proteína con Dominio Pirina 3 de la Familia NLR , Podocitos , Animales , Humanos , Ratones , Butiratos , Células Epiteliales , Inflamasomas , Interleucina-18 , Riñón , Proteína con Dominio Pirina 3 de la Familia NLR/genética
3.
Am J Physiol Cell Physiol ; 325(4): C849-C861, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642236

RESUMEN

Polyploidization of tubular cells (TC) is triggered by acute kidney injury (AKI) to allow survival in the early phase after AKI, but in the long run promotes fibrosis and AKI-chronic kidney disease (CKD) transition. The molecular mechanism governing the link between polyploid TC and kidney fibrosis remains to be clarified. In this study, we demonstrate that immediately after AKI, expression of cell cycle markers mostly identifies a population of DNA-damaged polyploid TC. Using transgenic mouse models and single-cell RNA sequencing we show that, unlike diploid TC, polyploid TC accumulate DNA damage and survive, eventually resting in the G1 phase of the cell cycle. In vivo and in vitro single-cell RNA sequencing along with sorting of polyploid TC shows that these cells acquire a profibrotic phenotype culminating in transforming growth factor (TGF)-ß1 expression and that TGF-ß1 directly promotes polyploidization. This demonstrates that TC polyploidization is a self-sustained mechanism. Interactome analysis by single-cell RNA sequencing revealed that TGF-ß1 signaling fosters a reciprocal activation loop among polyploid TC, macrophages, and fibroblasts to sustain kidney fibrosis and promote CKD progression. Collectively, this study contributes to the ongoing revision of the paradigm of kidney tubule response to AKI, supporting the existence of a tubulointerstitial cross talk mediated by TGF-ß1 signaling produced by polyploid TC following DNA damage.NEW & NOTEWORTHY Polyploidization in tubular epithelial cells has been neglected until recently. Here, we showed that polyploidization is a self-sustained mechanism that plays an important role during chronic kidney disease development, proving the existence of a cross talk between infiltrating cells and polyploid tubular cells. This study contributes to the ongoing revision of kidney adaptation to injury, posing polyploid tubular cells at the center of the process.


Asunto(s)
Lesión Renal Aguda , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Factor de Crecimiento Transformador beta1/genética , Lesión Renal Aguda/genética , Células Epiteliales , Poliploidía , Fibrosis
5.
Commun Biol ; 6(1): 382, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031307

RESUMEN

Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with the emergence of resistance to anti cancer treatment, though molecular mechanisms and biological significance remain elusive. Genome scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG rich regions (CpG islands). We report the first high coverage whole-genome map in cancer using the long read nanopore technology, which allows simultaneous DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, after chemotherapy. Long read sequencing coupled to a novel computational method allowed definition of differential methylation at unprecedented resolution, and showed that the relapse methylome is characterized by hypermethylation at both CpG islands and sparse CpGs regions. Most differentially methylated genes, however, were not differentially expressed nor enriched for chemoresistance genes. A small fraction of under-expressed and hyper-methylated genes at sparse CpGs, in the gene body, was significantly enriched in transcription factors (TFs). Remarkably, these few TFs supported large gene-regulatory networks including 50% of all differentially expressed genes in the relapsed AMLs and highly-enriched in chemoresistance genes. Notably, hypermethylated regions at sparse CpGs were poorly conserved in the relapsed AMLs, under-represented at their genomic positions and showed higher methylation entropy, as compared to CpG islands. Analyses of available datasets confirmed TF binding to their target genes and conservation of the same gene-regulatory networks in large patient cohorts. Relapsed AMLs carried few patient specific structural variants and DNA mutations, apparently not involved in drug resistance. Thus, drug resistance in AMLs can be mainly ascribed to the selection of random epigenetic alterations at sparse CpGs of a few transcription factors, which then induce reprogramming of the relapsing phenotype, independently of clonal genomic evolution.


Asunto(s)
Islas de CpG , Metilación de ADN , Resistencia a Antineoplásicos , Epigenoma , Leucemia Mieloide Aguda , Nanoporos , Humanos , Islas de CpG/genética , Islas de CpG/fisiología , ADN/genética , ADN/metabolismo , Metilación de ADN/genética , Metilación de ADN/fisiología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Epigenoma/genética , Epigenoma/fisiología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
Nat Commun ; 13(1): 5805, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195583

RESUMEN

Acute kidney injury (AKI) is frequent, often fatal and, for lack of specific therapies, can leave survivors with chronic kidney disease (CKD). We characterize the distribution of tubular cells (TC) undergoing polyploidy along AKI by DNA content analysis and single cell RNA-sequencing. Furthermore, we study the functional roles of polyploidization using transgenic models and drug interventions. We identify YAP1-driven TC polyploidization outside the site of injury as a rapid way to sustain residual kidney function early during AKI. This survival mechanism comes at the cost of senescence of polyploid TC promoting interstitial fibrosis and CKD in AKI survivors. However, targeting TC polyploidization after the early AKI phase can prevent AKI-CKD transition without influencing AKI lethality. Senolytic treatment prevents CKD by blocking repeated TC polyploidization cycles. These results revise the current pathophysiological concept of how the kidney responds to acute injury and identify a novel druggable target to improve prognosis in AKI survivors.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Lesión Renal Aguda/metabolismo , ADN/metabolismo , Progresión de la Enfermedad , Humanos , Riñón/metabolismo , Poliploidía , ARN/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Senoterapéuticos
7.
Sci Transl Med ; 14(657): eabg3277, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35947676

RESUMEN

Crescentic glomerulonephritis is characterized by vascular necrosis and parietal epithelial cell hyperplasia in the space surrounding the glomerulus, resulting in the formation of crescents. Little is known about the molecular mechanisms driving this process. Inducing crescentic glomerulonephritis in two Pax2Cre reporter mouse models revealed that crescents derive from clonal expansion of single immature parietal epithelial cells. Preemptive and delayed histone deacetylase inhibition with panobinostat, a drug used to treat hematopoietic stem cell disorders, attenuated crescentic glomerulonephritis with recovery of kidney function in the two mouse models. Three-dimensional confocal microscopy and stimulated emission depletion superresolution imaging of mouse glomeruli showed that, in addition to exerting an anti-inflammatory and immunosuppressive effect, panobinostat induced differentiation of an immature hyperplastic parietal epithelial cell subset into podocytes, thereby restoring the glomerular filtration barrier. Single-cell RNA sequencing of human renal progenitor cells in vitro identified an immature stratifin-positive cell subset and revealed that expansion of this stratifin-expressing progenitor cell subset was associated with a poor outcome in human crescentic glomerulonephritis. Treatment of human parietal epithelial cells in vitro with panobinostat attenuated stratifin expression in renal progenitor cells, reduced their proliferation, and promoted their differentiation into podocytes. These results offer mechanistic insights into the formation of glomerular crescents and demonstrate that selective targeting of renal progenitor cells can attenuate crescent formation and the deterioration of kidney function in crescentic glomerulonephritis in mice.


Asunto(s)
Glomerulonefritis , Podocitos , Animales , Modelos Animales de Enfermedad , Glomerulonefritis/tratamiento farmacológico , Humanos , Riñón/metabolismo , Ratones , Panobinostat/uso terapéutico , Podocitos/metabolismo , Células Madre/metabolismo
8.
Mol Cancer ; 20(1): 32, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579306

RESUMEN

In the "precision oncology" era the characterization of tumor genetic features is a pivotal step in cancer patients' management. Liquid biopsy approaches, such as analysis of cell-free DNA from plasma, represent a powerful and noninvasive strategy to obtain information about the genomic status of the tumor. Sequencing-based analyses of cell-free DNA, currently performed with second generation sequencers, are extremely powerful but poorly scalable and not always accessible also due to instrumentation costs. Third generation sequencing platforms, such as Nanopore sequencers, aim at overcoming these obstacles but, unfortunately, are not designed for cell-free DNA analysis.Here we present a customized workflow to exploit low-coverage Nanopore sequencing for the detection of copy number variations from plasma of cancer patients. Whole genome molecular karyotypes of 6 lung cancer patients and 4 healthy subjects were successfully produced with as few as 2 million reads, and common lung-related copy number alterations were readily detected.This is the first successful use of Nanopore sequencing for copy number profiling from plasma DNA. In this context, Nanopore represents a reliable alternative to Illumina sequencing, with the advantages of minute instrumentation costs and extremely short analysis time.The availability of protocols for Nanopore-based cell-free DNA analysis will make this analysis finally accessible, exploiting the full potential of liquid biopsy both for research and clinical purposes.


Asunto(s)
Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN , Neoplasias Pulmonares/diagnóstico , Análisis de Secuencia de ADN/métodos , Estudios de Casos y Controles , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida , Neoplasias Pulmonares/genética , Secuenciación de Nanoporos , Sensibilidad y Especificidad , Flujo de Trabajo
9.
Sci Transl Med ; 12(536)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213630

RESUMEN

Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence.


Asunto(s)
Lesión Renal Aguda , Adenoma , Carcinoma de Células Renales , Neoplasias Renales , Adenoma/genética , Animales , Biomarcadores de Tumor , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Ratones , Recurrencia Local de Neoplasia , Células Madre
10.
Oxid Med Cell Longev ; 2018: 6816508, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538804

RESUMEN

The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies show that ß3-adrenergic receptor (ß3-AR) is involved in tumor progression, playing an important role in metastasis. Among ß-adrenergic receptors, ß3-AR is the last identified member of this family, and it is involved in cancer cell survival and induction of stromal reactivity in the tumor microenvironment. ß3-AR is well known as a strong activator of uncoupling protein 1 (UCP1) in brown fat tissue. Interestingly, ß3-AR is strongly expressed in early embryo development and in many cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that ß3-AR is able to promote this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of mitochondrial dormancy through the induction of UCP2. The ß3-AR/UCP2 axis induces a strong reduction of mitochondrial activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by SR59230A, the specific ß3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate the presence of ß3-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 3/farmacología , Células Madre Embrionarias/metabolismo , Melanoma/metabolismo , Mitocondrias/metabolismo , Propanolaminas/farmacología , Animales , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/patología , Humanos , Melanoma/patología , Ratones , Mitocondrias/efectos de los fármacos , Receptores Adrenérgicos beta 3/metabolismo
11.
PLoS One ; 13(4): e0194472, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29621252

RESUMEN

The adoption of next generation sequencing based methods in cancer research allowed for the investigation of the complex genetic structure of tumor samples. In the last few years, considerable importance was given to the research of somatic variants and several computational approaches were developed for this purpose. Despite continuous improvements to these programs, the validation of their results it's a hard challenge due to multiple sources of error. To overcome this drawback different simulation approaches are used to generate synthetic samples but they are often based on the addition of artificial mutations that mimic the complexity of genomic variations. For these reasons, we developed a novel software, Xome-Blender, that generates synthetic cancer genomes with user defined features such as the number of subclones, the number of somatic variants and the presence of copy number alterations (CNAs), without the addition of any synthetic element. The singularity of our method is the "morphological approach" used to generate mutation events. To demonstrate the power of our tool we used it to address the hard challenge of evaluating the performance of nine state-of-the-art somatic variant calling methods for small and large variants (VarScan2, MuTect, Shimmer, BCFtools, Strelka, EXCAVATOR2, Control-FREEC and CopywriteR). Through these analyses we observed that by using Xome-Blender data it is possible to appraise small differences between their performance and we have designated VarScan2 and EXCAVATOR2 as best tool for this kind of applications. Xome-Blender is unix-based, licensed under the GPLv3 and freely available at https://github.com/rsemeraro/XomeBlender.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Genómica/métodos , Neoplasias/genética , Programas Informáticos , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Humanos , Mutación , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Flujo de Trabajo
12.
BMC Genomics ; 16: 340, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25903059

RESUMEN

BACKGROUND: By examining the genotype calls generated by the 1000 Genomes Project we discovered that the human reference genome GRCh37 contains almost 20,000 loci in which the reference allele has never been observed in healthy individuals and around 70,000 loci in which it has been observed only in the heterozygous state. RESULTS: We show that a large fraction of this rare reference allele (RRA) loci belongs to coding, functional and regulatory elements of the genome and could be linked to rare Mendelian disorders as well as cancer. We also demonstrate that classical germline and somatic variant calling tools are not capable to recognize the rare allele when present in these loci. To overcome such limitations, we developed a novel tool, named RAREVATOR, that is able to identify and call the rare allele in these genomic positions. By using a small cancer dataset we compared our tool with two state-of-the-art callers and we found that RAREVATOR identified more than 1,500 germline and 22 somatic RRA variants missed by the two methods and which belong to significantly mutated pathways. CONCLUSIONS: These results show that, to date, the investigation of around 100,000 loci of the human genome has been missed by re-sequencing experiments based on the GRCh37 assembly and that our tool can fill the gap left by other methods. Moreover, the investigation of the latest version of the human reference genome, GRCh38, showed that although the GRC corrected almost all insertions and a small part of SNVs and deletions, a large number of functionally relevant RRAs still remain unchanged. For this reason, also future resequencing experiments, based on GRCh38, will benefit from RAREVATOR analysis results. RAREVATOR is freely available at http://sourceforge.net/projects/rarevator .


Asunto(s)
Bases de Datos Genéticas , Variación Genética/genética , Genoma Humano , Alelos , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Neoplasias/genética , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Elementos Reguladores de la Transcripción/genética , Análisis de Secuencia de ADN , Interfaz Usuario-Computador
13.
J Gerontol A Biol Sci Med Sci ; 60(4): 520-3, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15933395

RESUMEN

UNLABELLED: An 82-year-old Caucasian man presented with initially asymptomatic livid red plaques on the plantar surface of the feet that become confluent and evolved into invasively growing nodules accompanied by massive edema. Histology allowed a diagnosis of the classical form of Kaposi's sarcoma; the serology test result for HIV was negative, whereas the associated human herpes virus type 8 was detected by polymerase chain reaction on the skin sample. Over the subsequent 6 months, skin lesions become vegetative and partially necrotic, and extended to the hands and eyelids. Chemotherapy with vinblastine appeared to stabilize the cutaneous disease, but the patient developed a massive gastrointestinal hemorrhage secondary to dissemination to the stomach. Twelve months after the onset of the disease, vegetative and easily bleeding lesions progressively occluded the mouth of the patient: histological features were consistent with a low-grade angiosarcoma distinct from that of Kaposi's sarcoma. The patient could not chew and swallow anymore; he was put on an artificial nutrition but died shortly thereafter. This case illustrates that, even in its classical form, Kaposi's sarcoma may be a malignant, rapidly progressing tumor. LEARNING POINTS: a) The extent and rate of spread of initial skin lesions should be considered to be early signs of aggressive dissemination, even in the absence of other variables (i.e., histological pattern, human herpes virus type 8 positive mononuclear cells) associated with progression of the disease. b) An endoscopy may be useful given the high prevalence of gastrointestinal involvement. c) When classical Kaposi's sarcoma displays aggressive behavior a second, primary malignant tumor arising from the vascular tissue should be investigated. TAKE-HOME MESSAGE: Even in its classical form, Kaposi's sarcoma may be a malignant, rapidly progressing tumor with visceral involvement; also, a second malignancy may occur in nearly one patient of four. Because localized skin lesions can regress completely with radiotherapy, watchful waiting is probably inappropriate in most cases.


Asunto(s)
Enfermedades del Pie/patología , Hemangiosarcoma/patología , Neoplasias Primarias Múltiples/patología , Neoplasias Palatinas/patología , Sarcoma de Kaposi/patología , Neoplasias Cutáneas/patología , Anciano , Anciano de 80 o más Años , Resultado Fatal , Estudios de Seguimiento , Humanos , Masculino , Invasividad Neoplásica , Sarcoma de Kaposi/secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA