Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38566478

RESUMEN

There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.


Asunto(s)
Daño del ADN , Hepatocitos , Pruebas de Mutagenicidad , Humanos , Hepatocitos/efectos de los fármacos , Mutágenos/toxicidad , Línea Celular , Medición de Riesgo
2.
Sci Rep ; 13(1): 15587, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863919

RESUMEN

Oxytocin (OXT) is a neuropeptide hormone termed "love hormone" produced and released during childbirth and lactation. It is also produced in response to skin stimulation (e.g., during hugging and massaging) and music therapy. The effects of OXT on various organs have been revealed in recent years; however, the relationship between hair follicles and OXT remains unclear. In this study, we examined the effects of OXT on dermal papilla (DP) cells that control hair growth by secreting growth/regression signals. Gene expression analysis revealed that DP signature markers were significantly upregulated in DP cells treated with OXT. In addition, we tested the hair growth-promoting effects of OXT using in vitro hair follicle organoids. OXT promoted the growth of hair peg-like sprouting by upregulating the expression of growth-promoting factors, including genes encoding vascular endothelial growth factor A (VEGFA). This study highlights the positive effects of OXT in hair follicles and may assist in the development of new treatments for alopecia.


Asunto(s)
Dermis , Oxitocina , Femenino , Humanos , Dermis/metabolismo , Oxitocina/farmacología , Oxitocina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Folículo Piloso/metabolismo , Cabello
3.
Toxicol Sci ; 197(1): 69-78, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37788138

RESUMEN

Lapatinib, an oral tyrosine kinase inhibitor used as a first-line treatment for HER2-positive breast cancer, has been reported to be associated with hepatotoxicity; however, the underlying mechanisms remain unclear. In this study, we report that lapatinib causes cytotoxicity in multiple types of hepatic cells, including primary human hepatocytes, HepaRG cells, and HepG2 cells. A 24-h treatment with lapatinib induced cell cycle disturbances, apoptosis, and DNA damage, and decreased the protein levels of topoisomerase in HepG2 cells. We investigated the role of cytochrome P450 (CYP)-mediated metabolism in lapatinib-induced cytotoxicity using our previously established HepG2 cell lines, which express each of 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrate that lapatinib is metabolized by CYP1A1, 3A4, 3A5, and 3A7. Among these, lapatinib-induced cytotoxicity and DNA damage were attenuated in cells overexpressing CYP3A5 or 3A7. Additionally, we measured the production of three primary metabolites of lapatinib (O-dealkylated lapatinib, N-dealkylated lapatinib, and N-hydroxy lapatinib) in CYP1A1-, 3A4-, 3A5-, and 3A7-overexpressing HepG2 cells. We compared the cytotoxicity of lapatinib and its 3 metabolites in primary human hepatocytes, HepaRG cells, and HepG2 cells and demonstrated that N-dealkylated lapatinib is more toxic than the parent drug and the other metabolites. Taken together, our results indicate that lapatinib-induced cytotoxicity involves multiple mechanisms, such as apoptosis and DNA damage; that N-dealkylated lapatinib is a toxic metabolite contributing to the toxic effect of lapatinib; and that CYP3A5- and 3A7-mediated metabolism plays a role in attenuating the cytotoxicity of lapatinib.


Asunto(s)
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Lapatinib/toxicidad , Lapatinib/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Microsomas Hepáticos/metabolismo
4.
Nat Commun ; 14(1): 6370, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828054

RESUMEN

Palmitic acid (PA) is the most common fatty acid in humans and mediates palmitoylation through its conversion into palmitoyl coenzyme A. Although palmitoylation affects many proteins, its pathophysiological functions are only partially understood. Here we demonstrate that PA acts as a molecular checkpoint of lipid reprogramming in HepG2 and Hep3B cells. The zinc finger DHHC-type palmitoyltransferase 23 (ZDHHC23) mediates the palmitoylation of plant homeodomain finger protein 2 (PHF2), subsequently enhancing ubiquitin-dependent degradation of PHF2. This study also reveals that PHF2 functions as a tumor suppressor by acting as an E3 ubiquitin ligase of sterol regulatory element-binding protein 1c (SREBP1c), a master transcription factor of lipogenesis. PHF2 directly destabilizes SREBP1c and reduces SREBP1c-dependent lipogenesis. Notably, SREBP1c increases free fatty acids in hepatocellular carcinoma (HCC) cells, and the consequent PA induction triggers the PHF2/SREBP1c axis. Since PA seems central to activating this axis, we suggest that levels of dietary PA should be carefully monitored in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Metabolismo de los Lípidos/fisiología , Lipoilación , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Neoplasias Hepáticas/metabolismo , Ubiquitinación , Proteínas de Homeodominio/metabolismo
5.
Arch Toxicol ; 97(10): 2785-2798, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37486449

RESUMEN

N-nitrosamine impurities have been increasingly detected in human drugs. This is a safety concern as many nitrosamines are mutagenic in bacteria and carcinogenic in rodent models. Typically, the mutagenic and carcinogenic activity of nitrosamines requires metabolic activation by cytochromes P450 enzymes (CYPs), which in many in vitro models are supplied exogenously using rodent liver homogenates. There are only limited data on the genotoxicity of nitrosamines in human cell systems. In this study, we used metabolically competent human HepaRG cells, whose metabolic capability is comparable to that of primary human hepatocytes, to evaluate the genotoxicity of eight nitrosamines [N-cyclopentyl-4-nitrosopiperazine (CPNP), N-nitrosodibutylamine (NDBA), N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisopropylamine (NEIPA), N-nitroso-N-methyl-4-aminobutyric acid (NMBA), and N-nitrosomethylphenylamine (NMPA)]. Under the conditions we used to culture HepaRG cells, three-dimensional (3D) spheroids possessed higher levels of CYP activity compared to 2D monolayer cells; thus the genotoxicity of the eight nitrosamines was investigated using 3D HepaRG spheroids in addition to more conventional 2D cultures. Genotoxicity was assessed as DNA damage using the high-throughput CometChip assay and as aneugenicity/clastogenicity in the flow-cytometry-based micronucleus (MN) assay. Following a 24-h treatment, all the nitrosamines induced DNA damage in 3D spheroids, while only three nitrosamines, NDBA, NDEA, and NDMA, produced positive responses in 2D HepaRG cells. In addition, these three nitrosamines also caused significant increases in MN frequency in both 2D and 3D HepaRG models, while NMBA and NMPA were positive only in the 3D HepaRG MN assay. Overall, our results indicate that HepaRG spheroids may provide a sensitive, human-based cell system for evaluating the genotoxicity of nitrosamines.


Asunto(s)
Nitrosaminas , Humanos , Nitrosaminas/toxicidad , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Carcinógenos/toxicidad , Daño del ADN , Dimetilnitrosamina/toxicidad , Mutágenos/toxicidad
6.
Regul Toxicol Pharmacol ; 141: 105410, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37210026

RESUMEN

Propranolol is a widely used ß-blocker that can generate a nitrosated derivative, N-nitroso propranolol (NNP). NNP has been reported to be negative in the bacterial reverse mutation test (the Ames test) but genotoxic in other in vitro assays. In the current study, we systematically examined the in vitro mutagenicity and genotoxicity of NNP using several modifications of the Ames test known to affect the mutagenicity of nitrosamines, as well as a battery of genotoxicity tests using human cells. We found that NNP induced concentration-dependent mutations in the Ames test, both in two tester strains that detect base pair substitutions, TA1535 and TA100, as well as in the TA98 frameshift-detector strain. Although positive results were seen with rat liver S9, the hamster liver S9 fraction was more effective in bio-transforming NNP into a reactive mutagen. NNP also induced micronuclei and gene mutations in human lymphoblastoid TK6 cells in the presence of hamster liver S9. Using a panel of TK6 cell lines that each expresses a different human cytochrome P450 (CYP), CYP2C19 was identified as the most active enzyme in the bioactivation of NNP to a genotoxicant among those tested. NNP also induced concentration-dependent DNA strand breakage in metabolically competent 2-dimensional (2D) and 3D cultures of human HepaRG cells. This study indicates that NNP is genotoxic in a variety of bacterial and mammalian systems. Thus, NNP is a mutagenic and genotoxic nitrosamine and a potential human carcinogen.


Asunto(s)
Mutágenos , Propranolol , Ratas , Animales , Cricetinae , Humanos , Mutágenos/toxicidad , Propranolol/toxicidad , Mutación , Daño del ADN , Mutagénesis , Pruebas de Mutagenicidad/métodos , Mamíferos
7.
Front Endocrinol (Lausanne) ; 14: 1138676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234799

RESUMEN

Diabetic retinopathy (DR) is a disease that causes visual deficiency owing to vascular leakage or abnormal angiogenesis. Pericyte apoptosis is considered one of the main causes of vascular leakage in diabetic retina, but there are few known therapeutic agents that prevent it. Ulmus davidiana is a safe natural product that has been used in traditional medicine and is attracting attention as a potential treatment for various diseases, but its effect on pericyte loss or vascular leakage in DR is not known at all. In the present study, we investigated on the effects of 60% edible ethanolic extract of U. davidiana (U60E) and catechin 7-O-ß-D-apiofuranoside (C7A), a compound of U. davidiana, on pericyte survival and endothelial permeability. U60E and C7A prevented pericyte apoptosis by inhibiting the activation of p38 and JNK induced by increased glucose and tumor necrosis factor alpha (TNF-α) levels in diabetic retina. Moreover, U60E and C7A reduced endothelial permeability by preventing pericyte apoptosis in co-cultures of pericytes and endothelial cells. These results suggest that U60E and C7A could be a potential therapeutic agent for reducing vascular leakage by preventing pericyte apoptosis in DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Ulmus , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/prevención & control , Retinopatía Diabética/patología , Pericitos , Células Endoteliales/patología , Apoptosis , Diabetes Mellitus/patología
8.
Cancer Cell Int ; 23(1): 106, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248544

RESUMEN

BACKGROUND: BCR::ABL1 fusion has significant prognostic value and is screened for chronic myeloid leukemia (CML) disease monitoring as a part of routine molecular testing. To overcome the limitations of the current standard real-time quantitative polymerase chain reaction (RQ-PCR), we designed and validated a next-generation sequencing (NGS)-based assay to quantify BCR::ABL1 and ABL1 transcript copy numbers. METHODS: After PCR amplification of the target sequence, deep sequencing was performed using an Illumina Nextseq 550Dx sequencer and in-house-designed bioinformatics pipeline. The Next-generation Quantitative sequencing (NQ-seq) assay was validated for its analytical performance, including precision, linearity, and limit of detection, using serially diluted control materials. A comparison with conventional RQ-PCR was performed with 145 clinical samples from 77 patients. RESULTS: The limit of detection of the NQ-seq was the molecular response (MR) 5.6 [BCR::ABL1 0.00028% international scale (IS)]. The NQ-seq exhibited excellent precision and linear range from MR 2.0 to 5.0. The IS value from the NQ-seq was highly correlated with conventional RQ-PCR. CONCLUSIONS: We conclude that the NQ-seq is an effective tool for monitoring BCR::ABL1 transcripts in CML patients with high sensitivity and reliability. Prospective assessment of the unselected large series is required to validate the clinical impact of this NGS-based monitoring strategy.

9.
Clin Cancer Res ; 29(14): 2725-2734, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37067525

RESUMEN

PURPOSE: Patient-specific molecular alterations leading to PARP inhibitor (PARPi) resistance are relatively unexplored. In this study, we analyzed serially collected circulating tumor DNA (ctDNA) from patients with BRCA1/2 mutations who received PARPis to investigate the resistance mechanisms and their significance in postprogression treatment response and survival. EXPERIMENTAL DESIGN: Patients were prospectively enrolled between January 2018 and December 2021 (NCT05458973). Whole-blood samples were obtained before PARPi administration and serially every 3 months until progression. ctDNA was extracted from the samples and sequenced with a 531-gene panel; gene sets for each resistance mechanism were curated. RESULTS: Fifty-four patients were included in this analysis. Mutation profiles of genes in pre-PARPi samples indicating a high tumor mutational burden and alterations in genes associated with replication fork stabilization and drug efflux were associated with poor progression-free survival on PARPis. BRCA hypomorphism and reversion were found in 1 and 3 patients, respectively. Among 29 patients with matched samples, mutational heterogeneity increased postprogression on PARPis, showing at least one postspecific mutation in 89.7% of the patients. These mutations indicate non-exclusive acquired resistance mechanisms-homologous recombination repair restoration (28%), replication fork stability (34%), upregulated survival pathway (41%), target loss (10%), and drug efflux (3%). We observed poor progression-free survival with subsequent chemotherapy in patients with homologous recombination repair restoration (P = 0.003) and those with the simultaneous involvement of two or more resistance mechanisms (P = 0.040). CONCLUSIONS: Analysis of serial ctDNAs highlighted multiple acquired resistance mechanisms, providing valuable insights for improving postprogression treatment and survival.


Asunto(s)
Antineoplásicos , ADN Tumoral Circulante , Neoplasias Ováricas , Femenino , Humanos , Antineoplásicos/uso terapéutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , ADN Tumoral Circulante/genética , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
10.
Sci Rep ; 13(1): 4847, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964149

RESUMEN

In vitro models of human hair follicle-like tissue could be fundamental tools to better understand hair follicle morphogenesis and hair drug screening. During prenatal development and postnatal cyclic hair regeneration, hair follicle morphogenesis is triggered by reciprocal interactions and the organization of the epithelial and mesenchymal cell populations. Given this mechanism, we developed an approach to induce hair peg-like sprouting in organoid cultures composed of epithelial and mesenchymal cells. Human fetal/adult epithelial and mesenchymal cells were cultured in a medium supplemented with a low concentration of either Matrigel or collagen I. These extracellular matrices significantly enhanced the self-organization capabilities of the epithelial and mesenchymal cells, resulting in spherical aggregation and subsequent hair peg-like sprouting. The length of the hair peg sprouting and associated gene expression significantly increased in the presence of a well-known hair drug, minoxidil. This approach may be beneficial for testing hair growth-promoting drug candidates.


Asunto(s)
Folículo Piloso , Células Madre Mesenquimatosas , Adulto , Embarazo , Femenino , Humanos , Cabello , Colágeno Tipo I , Organoides
11.
Arch Toxicol ; 97(4): 1163-1175, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36847820

RESUMEN

The in vitro micronucleus (MN) assay is a component of most test batteries used in assessing potential genotoxicity. Our previous study adapted metabolically competent HepaRG cells to the high-throughput (HT) flow-cytometry-based MN assay for genotoxicity assessment (Guo et al. in J Toxicol Environ Health A 83:702-717, 2020b, https://doi.org/10.1080/15287394.2020.1822972 ). We also demonstrated that, compared to HepaRG cells grown as two-dimensional (2D) cultures, 3D HepaRG spheroids have increased metabolic capacity and improved sensitivity in detecting DNA damage induced by genotoxicants using the comet assay (Seo et al. in ALTEX 39:583-604, 2022, https://doi.org/10.14573/altex.22011212022 ). In the present study, we have compared the performance of the HT flow-cytometry-based MN assay in HepaRG spheroids and 2D HepaRG cells by testing 34 compounds, including 19 genotoxicants or carcinogens and 15 compounds that show different genotoxic responses in vitro and in vivo. 2D HepaRG cells and spheroids were exposed to the test compounds for 24 h, followed by an additional 3- or 6-day incubation with human epidermal growth factor to stimulate cell division. The results demonstrated that HepaRG spheroids showed generally higher sensitivity in detecting several indirect-acting genotoxicants (require metabolic activation) compared to 2D cultures, with 7,12-dimethylbenzanthracene and N-nitrosodimethylamine inducing higher % MN formation along with having significantly lower benchmark dose values for MN induction in 3D spheroids. These data suggest that 3D HepaRG spheroids can be adapted to the HT flow-cytometry-based MN assay for genotoxicity testing. Our findings also indicate that integration of the MN and comet assays improved the sensitivity for detecting genotoxicants that require metabolic activation. These results suggest that HepaRG spheroids may contribute to New Approach Methodologies for genotoxicity assessment.


Asunto(s)
Daño del ADN , Mutágenos , Humanos , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Ensayo Cometa/métodos , Pruebas de Mutagenicidad/métodos
12.
Ultrason Sonochem ; 90: 106214, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36327919

RESUMEN

Cavitational/sonochemical activity can be significantly enhanced or reduced depending on the gases dissolved in the liquid. Although many researchers have suggested the order of importance of dissolved gas conditions that affect the degree of sonoluminescence (SL), sonochemiluminescence (SCL), and compound degradation, the most suitable gas condition for sonochemical oxidation reactions is currently unknown. In this study (Part I), the effects of gas saturation and sparging on the generation of H2O2 were investigated in a 28-kHz sonoreactor system. Four gas modes, saturation/closed, saturation/open, sparging/closed, and sparging/open, were applied to Ar, O2, N2, and binary gas mixtures. The change in dissolved oxygen (DO) concentration during ultrasonic irradiation was measured and was used as an indicator of whether the gaseous exchange between liquid and air altered the gas content of the liquid. Considerable difference in the DO concentration was observed for the gas saturation/open mode, ranging from -11.5 mg/L (O2 100 %) to +4.3 mg/L (N2 100 %), while no significant difference was observed in the other gas modes. The change in the gas content significantly reduced the linearity for H2O2 generation, which followed pseudo-zero-order kinetics, and either positively or negatively affected H2O2 generation. Ar:O2 (75:25) and Ar:O2 (50:50) resulted in the highest and second-highest H2O2 generation for both gas saturation and sparging, respectively. In addition, gas sparging resulted in much higher H2O2 generation for all gas conditions compared to gas saturation; this was because of the significant change in the cavitational active zone and concentrated ultrasonic energy, which formed a bulb-shaped active zone, especially for the Ar/O2 mixtures adjacent to the transducer at the bottom. The sparging flow rate and position also significantly affected H2O2 generation; the highest H2O2 generation was obtained when the sparger was placed at the bottom adjacent to the transducer, with a flow rate of 3 L/min. In Part II, the generation of nitrogen oxides, including nitrite (NO2-) and nitrate (NO3-), was investigated using the same ultrasonic system with three gas modes: saturation/open, saturation/closed, and sparging/closed.


Asunto(s)
Gases , Peróxido de Hidrógeno , Peróxido de Hidrógeno/química , Nitratos , Nitritos , Oxidación-Reducción
13.
Clin Chem ; 68(12): 1519-1528, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36306340

RESUMEN

BACKGROUND: Ultra-deep sequencing to detect low-frequency mutations in circulating tumor-derived DNA (ctDNA) increases the diagnostic value of liquid biopsy. The demand for large ctDNA panels for comprehensive genomic profiling and tumor mutational burden (TMB) estimation is increasing; however, few ctDNA panels for TMB have been validated. Here, we designed a ctDNA panel with 531 genes, named TMB500, along with a technical and clinical validation. METHODS: Synthetic reference cell-free DNA materials with predefined allele frequencies were sequenced in a total of 92 tests in 6 batches to evaluate the precision, linearity, and limit of detection of the assay. We used clinical samples from 50 patients with various cancers, 11 healthy individuals, and paired tissue samples. Molecular barcoding and data analysis were performed using customized pipelines. RESULTS: The assay showed high precision and linearity (coefficient of determination, r2 =0.87) for all single nucleotide variants, with a limit of detection of 0.24%. In clinical samples, the TMB500 ctDNA assay detected most variants present and absent in tissues, showing that ctDNA could assess tumor heterogeneity in different tissues and metastasis sites. The estimated TMBs correlated well between tissue and blood, except in 4 cases with extreme heterogeneity that showed very high blood TMBs compared to tissue TMBs. A pilot evaluation showed that the TMB500 assay could be used for disease monitoring. CONCLUSIONS: The TMB500 assay is an accurate and reliable ctDNA assay for many clinical purposes. It may be useful for guiding the treatment of cancers with diverse genomic profiles, estimating TMB in immune therapy, and disease monitoring.


Asunto(s)
ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Biomarcadores de Tumor/genética , Biopsia Líquida , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Cancer Cell Int ; 22(1): 306, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209207

RESUMEN

BACKGROUND: Prostate cancer (PCa) is characterized by complex genomic rearrangements such as the ETS oncogene family fusions, yet the clinical relevance is not well established. While paneled genetic tests of DNA repair genes are recommended in advanced PCa, conventional genomic or cytogenetic tools are not ideal for genome-wide screening of structural variations (SVs) such as balanced translocation due to cost and/or resolution issues. METHODS: In this study, we tested the feasibility of whole-genome optical genomic mapping (OGM), a newly developed platform for genome-wide SV analysis to detect complex genomic rearrangements in consecutive unselected PCa samples from MRI/US-fusion targeted biopsy. RESULTS: We tested ten samples, and nine (90%) passed quality check. Average mapping rate and coverage depth were 58.1 ± 23.7% and 157.3 ± 97.7×, respectively (mean ± SD). OGM detected copy number alterations such as chr6q13 loss and chr8q12-24 gain. Two adjacent tumor samples were distinguished by inter/intra-chromosomal translocations, revealing that they're from the same ancestor. Furthermore, OGM detected large deletion of chr13q13.1 accompanied by inter-chromosomal translocation t(13;20)(q13.1;p13) occurring within BRCA2 gene, suggesting complete loss of function. CONCLUSION: In conclusion, clinically relevant genomic SVs were successfully detected in PCa samples by OGM. We suggest that OGM can complement panel sequencing of DNA repair genes BRCA1/2 or ATM in high-risk PCa.

15.
ALTEX ; 39(4): 583-604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35791290

RESUMEN

Three-dimensional (3D) culture systems are increasingly being used for genotoxicity studies due to improved cell-to-cell interactions and tissue-like structures that are limited or lacking in 2D cultures. The present study optimized a 3D culture system using metabolically competent HepaRG cells for in vitro genotoxicity testing. 3D HepaRG spheroids, formed in 96- or 384-well ultra-low attachment plates, were exposed to various concentrations of 34 test articles, including 8 direct-acting and 11 indirect-acting genotoxicants/carcinogens as well as 15 compounds that show different genotoxic responses in vitro and in vivo. DNA damage was evaluated using the high-throughput CometChip assay with con-current cytotoxicity assessment by the ATP assay in both 2D and 3D cultures. 3D HepaRG spheroids maintained a stable phenotype for up to 30 days with higher levels of albumin secretion, cytochrome P450 gene expression, and enzyme activities compared to 2D cultures. 3D spheroids also demonstrated a higher sensitivity than 2D cultures for detecting both direct- and indirect-acting genotoxicants/carcinogens, indicating a better prediction of in vivo genotoxicity responses. When DNA damage dose-response data were quantified using PROAST software, 3D spheroids generally had lower or similar benchmark dose values compared to 2D HepaRG cells and were more comparable with primary human hepatocytes. These results demonstrate that 3D models can be adapted to the CometChip technology for high-throughput genotoxicity testing and that 3D HepaRG spheroids may be used as a reliable and pragmatic in vitro approach to better support the hazard identification and risk assessment of potential human genotoxic carcinogens.


Asunto(s)
Alternativas a las Pruebas en Animales , Esferoides Celulares , Animales , Humanos , Pruebas de Mutagenicidad , Hepatocitos , Carcinógenos
16.
Liver Int ; 42(10): 2317-2326, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35776657

RESUMEN

PURPOSE: Liquid biopsy has emerged as a promising tool for minimally invasive and accurate detection of various malignancies. We aimed to apply molecular barcode sequencing to circulating tumour DNA (ctDNA) from liquid biopsies of hepatocellular carcinoma (HCC). STUDY DESIGN: Patients with HCC or benign liver disease were enrolled between 2017 and 2018. Matched tissue and serum samples were obtained from these patients. Plasma cell-free DNA was extracted and subjected to targeted sequencing with ultra-high coverage and molecular barcoding. RESULTS: The study included 143 patients: 102 with HCC, 7 with benign liver tumours and 34 with chronic liver disease. No tier 1/2 or oncogenic mutations were detected in patients with benign liver disease. Among the HCC patients, 49 (48%) had tier 1/2 mutations in at least one gene; detection rates were higher in advanced stages (75%) than in early stages (26%-33%). TERT was the most frequently mutated gene (30%), followed by TP53 (16%), CTNNB1 (14%), ARID2 (5%), ARID1A (4%), NFE2L2 (4%), AXIN1 (3%) and KRAS (1%). Survival among patients with TP53 mutations was significantly worse (p = 0.007) than among patients without these mutations, whereas CTNNB1 and TERT mutations did not affect survival. ctDNA testing combined with α-fetoprotein and prothrombin induced by vitamin K absence-II analyses improved HCC detection, even in early stages. CONCLUSIONS: ctDNA detection using molecular barcoding technology offers dynamic and personalized information concerning tumour biology, such information can guide clinical diagnosis and management. This detection also has the potential as a minimally invasive approach for prognostic stratification and post-therapeutic monitoring.


Asunto(s)
Carcinoma Hepatocelular , ADN Tumoral Circulante , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Mutación
17.
Adv Sci (Weinh) ; 9(23): e2201212, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35694866

RESUMEN

Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aß+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aß- and 90 Aß+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aß-, 5 Aß+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloidosis/metabolismo , Autofagia/genética , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Microglía/metabolismo , Microglía/patología
18.
J Biosci Bioeng ; 134(1): 55-61, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35431119

RESUMEN

Dermal papilla cells (DPCs), which play a central role in the regulation of hair follicle development and hair growth, are among the most promising cell sources for hair regenerative medicine. However, a critical issue in the use of DPCs is the immediate loss of hair inducing functions in typical two-dimensional (2D) culture. We have previously demonstrated that when DPCs are encapsulated in drops of collagen gel (named hair beads, HBs), the density of collagen and cells is concentrated >10-fold during 3 d of culture through the spontaneous constriction of the drops, leading to efficient hair follicle regeneration upon transplantation. However, the mechanisms responsible for the activation of the hair-inducing functions of DPCs have been poorly elucidated. Here, transcriptome comparisons of human DPCs in HB culture and in typical 2D culture revealed that the phosphoinositide 3-kinase and Akt (PI3K/Akt) signaling pathway was significantly upregulated in HB culture. Inhibition of the PI3K/Akt signaling pathway decreased the hair-inducing capability of DPCs in HBs, while the activation of the PI3K/Akt signaling pathway using an activator improved trichogenous gene expression of DPCs in 2D culture. These results suggest that the PI3K/Akt signaling pathway is crucial for the maintenance and restoration of hair inductivity of DPCs. HB culture and/or activators of the PI3K/Akt signaling pathway could be a promising strategy for preparing DPCs for hair regenerative medicine.


Asunto(s)
Folículo Piloso , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Proliferación Celular , Células Cultivadas , Colágeno , Cabello , Folículo Piloso/citología , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
19.
Pflugers Arch ; 474(6): 591-601, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35348849

RESUMEN

Cancer cells rewire metabolic processes to adapt to the nutrient- and oxygen-deprived tumour microenvironment, thereby promoting their proliferation and metastasis. Previous research has shown that modifying glucose metabolism, the Warburg effect, makes glycolytic cancer cells more invasive and aggressive. Lipid metabolism has also been receiving attention because lipids function as energy sources and signalling molecules. Because obesity is a risk factor for various cancer types, targeting lipid metabolism may be a promising cancer therapy. Here, we review the lipid metabolic reprogramming in cancer cells mediated by hypoxia-inducible factor-1 (HIF-1). HIF-1 is the master transcription factor for tumour growth and metastasis by transactivating genes related to proliferation, survival, angiogenesis, invasion, and metabolism. The glucose metabolic shift (the Warburg effect) is mediated by HIF-1. Recent research on HIF-1-related lipid metabolic reprogramming in cancer has confirmed that HIF-1 also modifies lipid accumulation, ß-oxidation, and lipolysis in cancer, triggering its progression. Therefore, targeting lipid metabolic alterations by HIF-1 has therapeutic potential for cancer. We summarize the role of the lipid metabolic shift mediated by HIF-1 in cancer and its putative applications for cancer therapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Glucólisis , Humanos , Hipoxia , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lípidos , Neoplasias/metabolismo
20.
Sci Rep ; 12(1): 3141, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210544

RESUMEN

Pepper fruit (Capsicum annuum L.) is sensitive to chilling stress with chilling injuries occurring below 7 °C; however, chilling injuries occur at different temperatures depending on the genotype. The present study aimed to identify the factors that affect chilling sensitivity in pepper fruits. A total of 112 F2 pepper fruits crossed between chilling-insensitive 'UZB-GJG-1999-51' and chilling-sensitive 'C00562' pepper were grouped according to the seed browning rate, which is a typical chilling symptom of pepper fruit under chilling conditions. Physiological traits, amino acids, fatty acids, as well as ethylene responsive factor (ERF) and jasmonate resistant 1 (JAR1) expression levels were analyzed, and their correlations with the seed browning rate were confirmed. The expression level of JAR1 showed a strong negative correlation with the seed browning rate (r = - 0.7996). The expression level of ERF11 and content of hydrogen peroxide showed strong positive correlation with the seed browning rate (r = 0.7622 and 0.6607, respectively). From these results, we inferred that JAR1 and ERF11 are important factors influencing the chilling sensitivity of pepper fruit.


Asunto(s)
Capsicum/metabolismo , Respuesta al Choque por Frío , Frutas/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Capsicum/genética , Frutas/genética , Nucleotidiltransferasas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA