Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Transl Psychiatry ; 11(1): 413, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330890

RESUMEN

Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE = 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P = 1.6E-06), PCDH7 (P = 2.0E-06), and IPO13 (P = 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg = 0.46 between self- and teacher-assessment to rg = 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range [Formula: see text]: 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg = ~-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range [Formula: see text]: 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.


Asunto(s)
Agresión , Trastornos Mentales , Adolescente , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Estudios Retrospectivos
2.
Alcohol Clin Exp Res ; 41(4): 711-718, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28196272

RESUMEN

BACKGROUND: Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies. METHODS: We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate. RESULTS: No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10-5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10-5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family. CONCLUSIONS: To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD.


Asunto(s)
Alcoholismo/diagnóstico , Alcoholismo/genética , Estudios de Asociación Genética/métodos , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Adulto , Alcoholismo/epidemiología , Femenino , Humanos , Masculino , Adulto Joven
3.
Nicotine Tob Res ; 18(5): 626-31, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26283763

RESUMEN

INTRODUCTION: Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\CHRNA3\CHRNB4, CHRNB3\CHRNA6 and EGLN2\CYP2A6. Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. METHODS: We employed targeted capture of the CHRNA5\CHRNA3\CHRNB4, CHRNB3\CHRNA6, and EGLN2\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78×) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. RESULTS: In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6. Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2. CONCLUSIONS: We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Fumar/genética , Adulto , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Tabaquismo/genética
4.
Bioinformatics ; 28(10): 1353-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22492648

RESUMEN

MOTIVATION: Expression quantitative trait loci (eQTL) analysis links variations in gene expression levels to genotypes. For modern datasets, eQTL analysis is a computationally intensive task as it involves testing for association of billions of transcript-SNP (single-nucleotide polymorphism) pair. The heavy computational burden makes eQTL analysis less popular and sometimes forces analysts to restrict their attention to just a small subset of transcript-SNP pairs. As more transcripts and SNPs get interrogated over a growing number of samples, the demand for faster tools for eQTL analysis grows stronger. RESULTS: We have developed a new software for computationally efficient eQTL analysis called Matrix eQTL. In tests on large datasets, it was 2-3 orders of magnitude faster than existing popular tools for QTL/eQTL analysis, while finding the same eQTLs. The fast performance is achieved by special preprocessing and expressing the most computationally intensive part of the algorithm in terms of large matrix operations. Matrix eQTL supports additive linear and ANOVA models with covariates, including models with correlated and heteroskedastic errors. The issue of multiple testing is addressed by calculating false discovery rate; this can be done separately for cis- and trans-eQTLs.


Asunto(s)
Expresión Génica , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Programas Informáticos , Algoritmos , Fibrosis Quística/genética , Genotipo , Humanos
5.
Breast Cancer Res Treat ; 133(3): 865-80, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22048815

RESUMEN

Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisher's exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11-35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.


Asunto(s)
Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN , Inestabilidad Genómica , Neoplasias Basocelulares/genética , Ácido Anhídrido Hidrolasas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Proteínas de Ciclo Celular/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes BRCA1 , Humanos , Neoplasias Basocelulares/tratamiento farmacológico , Neoplasias Basocelulares/mortalidad , Análisis de Supervivencia
6.
Bioinformatics ; 24(9): 1154-60, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18325927

RESUMEN

MOTIVATION: Gene-expression microarrays are currently being applied in a variety of biomedical applications. This article considers the problem of how to merge datasets arising from different gene-expression studies of a common organism and phenotype. Of particular interest is how to merge data from different technological platforms. RESULTS: The article makes two contributions to the problem. The first is a simple cross-study normalization method, which is based on linked gene/sample clustering of the given datasets. The second is the introduction and description of several general validation measures that can be used to assess and compare cross-study normalization methods. The proposed normalization method is applied to three existing breast cancer datasets, and is compared to several competing normalization methods using the proposed validation measures. AVAILABILITY: The supplementary materials and XPN Matlab code are publicly available at website: https://genome.unc.edu/xpn


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Familia de Multigenes/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Interpretación Estadística de Datos , Perfilación de la Expresión Génica/normas , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA