Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 130957, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499121

RESUMEN

Deterioration in mechanical performances and aging resistance due to the introduction of flame retardants is a major obstacle for bio-based fire-safety polypropylene (PP). Herein, we reported a kind of functionalized lignin nanoparticles assembled with MXene (MX@LNP), and applied it to construct the flame-retardant PP composites (PP-MA) with superior fire safety, excellent mechanical performance, electromagnetic shielding effects and aging resistance. Specifically, the PP-MA doped with only 18 wt% flame-retardant additives (PP-MA18) achieved the UL-94 V-0 rating. In comparison to pure PP, PP-MA18 presented a greatly decreased peak of heat release rate (pHRR), total heat rate (THR), and peak smoke production rate (pSPR) by 79.7 %, 69.0 % and 75.8 %, respectively, and satisfactory decrease in total flammable and toxic volatiles evolved. The formed fine solid microstructure of carbon residuals effectively promoted the compactness of char layers. More importantly, the nano-effect and the strong interface interaction between the complexed MX@LNP and PP enhanced the tensile strength (45.78 MPa) and elongation at break (725.95 %) of PP-MA. Additionally, the significant ultraviolet absorption and electromagnetic wave dissipation performance of MXene and lignin enabled excellent aging resistance and electromagnetic shielding effects of PP-MA compared with PP. This achieved MX@LNP afforded a novel approach for developing flame retardant materials with excellent application performance.


Asunto(s)
Retardadores de Llama , Nanopartículas , Nitritos , Elementos de Transición , Lignina , Polipropilenos , Fenómenos Electromagnéticos
2.
Int J Biol Macromol ; 264(Pt 1): 130409, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417750

RESUMEN

Flame retardants containing biomass receive growing interest in environmental friendliness and sustainability but usually face the low flame-retardant efficiency and deterioration on mechanical property of matrix. Herein, a calcium gluconate-based flame retardant (CG@APP) was chemically prepared using calcium gluconate (CG) and ammonium polyphosphate (APP) via ion exchange reaction, and enabled the excellent fire safety and mechanical enhancement for epoxy resin (EP). The resulted EP composites containing 6 wt% CG@APP (EP/CG@APP6) exhibited V-0 ratings in UL-94 test. Furthermore, with respect to EP/APP6, the peak of heat release rate (pHRR) and peak of smoke production rate (pSPR) of EP/CG@APP6 decreased by 70.5 % and 50.0 %, respectively. The well synergistic flame-retardant mechanism of CG@APP between gaseous and solid phases was revealed to generate denser and more continuous charring residuals, which could do well work on insulation for heat transfer and fuel diffusion. In addition, the shell rich in hydroxyl group and Ca2+ on the surface of CG@APP well enhanced the interface compatibility through the hydrogen bond and coordinated bond, thus the tensile strength, flexural strength and impact strength of EP/CG@APP6 increased by 18.2 %, 4.5 % and 9.1 % compared with pure EP, respectively. This work provided a simple and sustainable way to construct excellent fire-safety composites.


Asunto(s)
Resinas Epoxi , Retardadores de Llama , Gluconato de Calcio , Biomasa , Difusión , Polifosfatos
3.
Int J Biol Macromol ; 260(Pt 2): 129599, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246455

RESUMEN

Addressing highly flammable and easily breeding bacteria property via environmentally friendly approach was critical for the large-scale application of lyocell fibers. Herein, a bio-based coating constructed by layer-by-layer deposition of adenosine triphosphate (ATP), chitosan (CS), and polyethyleneimine (PEI) was successfully fabricated to obtain excellent fire-resistant and antimicrobial lyocell fabrics (LBL/Lyocell). The resulted fabrics with add-on of 11.5 wt% achieved the limiting oxygen index (LOI) of 32.0 %. Meanwhile, compared with the pure lyocell fabrics, the peak of heat release rate (PHRR), total heat release (THR), and fire growth rate (FIGRA) of LBL/Lyocell fabrics decreased by 75.2 %, 61.0 % and 69.8 % in cone calorimetric test (CCT), respectively. By characterizing the gaseous products and solid residues, the presence of the ATP/CS/PEI coating could not only quickly form the dense expanded carbon layer by itself, but also promote the conversion of cellulose into thermal-stability residues, thus reducing the release of combustible substances during combustion and protecting the lyocell fabrics. In addition, LBL/Lyocell showed excellent antimicrobial properties with 99.99 % antibacterial rates against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This bio-based coating was a promising candidate for efficiently flame-retardant cellulose fibers with excellent antibacteria.


Asunto(s)
Quitosano , Retardadores de Llama , Escherichia coli , Polietileneimina , Staphylococcus aureus , Adenosina Trifosfato , Antibacterianos/farmacología , Celulosa
4.
Int J Biol Macromol ; 253(Pt 7): 127349, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838134

RESUMEN

The design of flame-retardant cellulose fabrics suffered from deterioration on wearing performance and environmental issue. Here, we developed facile construction of bio-based high fire-safety cellulose fabrics (lyocell) that exploited the bio-based flame-retardant coating (APD) by adenosine triphosphate (ATP) and dicyandiamide (DCD) via ionic reaction. The rich phosphorus/nitrogen elements of APD enabled the excellent fire safety of APD/Lyocell. Specifically, the APD/Lyocell2 had a higher limiting oxygen index (LOI) value of 29.3 %, a lower peak of heat release rate (PHRR, decreasing by 66.6 %), and a reduced total heat rate (THR, lowered by 56.5 %) with respect to pure lyocell fabrics. Interestingly, the APD/Lyocell2 exhibited well flame-retardant durability via passing the vertical burning test after 100 rubs. The satisfactory flame-retardant behaviors of APD/Lyocell derived from the excellent synergistic effect on the gaseous-solid phases, where APD could release more non-flammable gasses and generate phosphoric acid, polyphosphoric acid, etc. to accelerate itself and cellulose dehydration into char residues during combustion. More importantly, the wearing performance of APD/Lyocell fabrics, such as handle, air permeability and tensile strength, etc. almost remained after treatment. The ease of operation and use of bio-based coating made it a promising option to obtain the practical lyocell fabrics with flame-retardancy.


Asunto(s)
Celulosa , Retardadores de Llama , Adenosina Trifosfato , Gases , Calor
5.
ACS Appl Mater Interfaces ; 7(32): 17919-28, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26186089

RESUMEN

A novel multifunctional organic-inorganic hybrid was designed and prepared based on ammonium polyphosphate (APP) by cation exchange with diethylenetriamine (DETA), abbreviated as DETA-APP. Then DETA-APP was used as flame-retardant curing agent for epoxy resin (EP). Curing behavior, including the curing kinetic parameters, was investigated by differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). The flame retardance and burning behavior of DETA-APP cured EP were also evaluated. The limiting oxygen index (LOI) value of DETA-APP/EP was enhanced to 30.5% with only 15 wt % of DETA-APP incorporated; and the UL-94 V-0 rating could be easily passed through with only 10 wt % of the hybrid. Compared with DETA/EP, the peak-heat release rate (PHRR), total heat release (THR), total smoke production (TSP), and peak-smoke production release (SPR) of DETA-APP/EP (15 wt % addition), obtained from cone calorimetry, were dropped by 68.3, 79.3, 79.0, and 30.0%, respectively, suggesting excellent flame-retardant and smoke suppression efficiency. The flame-retardant mechanism of DETA-APP/EP has been investigated comprehensively. The results of all the aforementioned studies distinctly confirmed that DETA-APP was an effective flame-retardant curing agent for EP.

6.
ACS Appl Mater Interfaces ; 6(10): 7363-70, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24742305

RESUMEN

We found in our previous study that ethylenediamine- or ethanolamine-modified ammonium polyphosphates could be used alone as an intumescent flame retardant for polypropylene (PP), but their flame-retardant efficiency was not very high. In this present work, a novel highly-efficient mono-component polymeric intumescent flame retardant, piperazine-modified ammonium polyphosphate (PA-APP) was prepared. The oxygen index value of PP containing 22 wt % of PA-APP reached 31.2%, which increased by 58.4% compared with that of PP with equal amount of APP, and the vertical burning test (UL-94) could pass V-0 rating. Cone calorimeter (CC) results indicated that PP/PA-APP composite exhibited superior performance compared with PP/APP composite. For PP containing 25 wt % of PA-APP, fire growth rate (FGR) and smoke production rate (SPR) peak were reduced by 86.4% and 78.2%, respectively, compared with PP blended with 25 wt % APP. The relevant flame-retardant mechanism of PA-APP was investigated by Fourier transform infrared spectroscopy etc. The P-N-C structure with the alicyclic amine was formed during the thermal decomposition of piperazine salt (-NH2(+)-O-P-), and the rich P-N-C structure facilitated the formation of stable char layer at the later stage, consequently improving the flame-retardant efficiency of APP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA