Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Talanta ; 199: 679-688, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952315

RESUMEN

Niclosamide, an anthelmintic drug recently repurposed for its activity against cancer, crystallizes into three solvated forms, two monohydrates (NHa, NHb) and one anhydrous (NAn) form. NAn is sensitive to pseudopolymorphic transformations that affect its dissolution and consequently, its bioavailability. NAn exhibits a polymorphic conversion to metastable monohydrate (NHa) form during high-energy milling in presence of poorly soluble solvents like water. It is hence very important to quantify polymorphic conversion from NAn to NHa, as water is a commonly used solvent during various processing like ball milling and wet granulation. This main objective of the study was to examine the feasibility of Raman, NIR and MIR spectroscopic techniques for identification and quantification of polymorphic forms of niclosamide in binary mixtures and multicomponent mixtures. Calibration models were developed and validated by vibrational spectroscopic techniques in binary mixtures of NAn and NHa and in multicomponent mixtures by chemometric techniques. These techniques were further used to identify and quantify NHa during ball milling, granulation and in presence of other polymorphic forms of niclosamide. Identification and quantification of pseudopolymorphs in binary and multicomponent mixtures with an acceptable recovery of 100.13-102.99% for Raman and 100.07-101.28% for NIR with low % RSD of 2.38-3.12 for both techniques were obtained. The % NHa determined during ball milling and granulation was similar by NIR and Raman. Raman spectroscopy however showed a greater advantage over other techniques in determining the NHa in presence of NHb due to significant difference in the spectral region of hydrates, when compared to NIR and MIR.

2.
Carbohydr Polym ; 212: 252-259, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30832855

RESUMEN

Niclosamide, previously used as an anthelmintic drug is currently being repurposed for its anticancer activity. Niclosamide is a brick like biopharmaceutical classification system (BCS) class II drug with poor aqueous solubility and dissolution consequently leading to low bioavailability. By considering the physicochemical properties and geometry of niclosamide, inclusion complex with cyclodextrin was prepared by freeze drying method and characterized using FT-IR, DSC, PXRD, and 1HNMR. In silico molecular modeling study was performed to study the possible interactions between niclosamide and cyclodextrin. The anticancer activity of niclosamide formulation was evaluated through in vitro cell cytotoxicity study using various cancer cell lines. The potential of niclosamide complex for improvement of the bioavailability was evaluated in male BALB/c mice. In vitro cytotoxicity studies indicated significantly higher cytotoxicity at lower concentrations and the pharmacokinetic studies showed significant improvement in Cmax and Tmax of niclosamide from cyclodextrin complex in comparison to pure niclosamide alone.


Asunto(s)
Antineoplásicos/síntesis química , Ciclodextrinas/síntesis química , Composición de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Niclosamida/síntesis química , Animales , Anticestodos/síntesis química , Anticestodos/metabolismo , Antineoplásicos/metabolismo , Ciclodextrinas/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Niclosamida/metabolismo
3.
Int J Pharm ; 528(1-2): 202-214, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28596138

RESUMEN

Recent reports on the anticancer potential of niclosamide have opened new avenues for anticancer treatment. Niclosamide belongs to the BCS class II, which is indicative of poor solubility and dissolution rate limited absorption. The aim of this study was to improve the dissolution rate of the drug by mesoporous drug delivery system. Porous silica grades (ordered and nonordered) with different pore size, pore volume and surface area were used in the study. The drug was loaded on silica carriers by the solvent evaporation method and characterized by BET surface area analysis, SEM, P-XRD, DSC, and FTIR. A discriminatory dissolution medium was developed for performing the in vitro dissolution of niclosamide. In comparison to the plain drug, all silica based formulations showed improvement in the dissolution rate. Maximum enhancement in the dissolution rate was observed in 1:2 drug:carrier loading ratio when compared to 1:1 ratio. Different properties of mesoporous silica like structural geometry, pore size and microenvironment pH demonstrated a significant impact on drug release from the formulations. Cytotoxicity of the optimized mesoporous formulations of niclosamide was explored in HCT-116, HCT-15, NCI, MDA-MB-231 and A549 cancer cell lines. Nearly 3 fold and 2 fold increase in% cytotoxicity of drug loaded Syloid-244 and Sylysia 350 at 1:2 ratio respectively, were observed when compared to the plain drug.


Asunto(s)
Portadores de Fármacos/química , Niclosamida/administración & dosificación , Dióxido de Silicio/química , Línea Celular Tumoral , Humanos , Porosidad , Solubilidad
4.
Eur J Pharm Sci ; 104: 82-89, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28366649

RESUMEN

Combinational therapy has become increasingly popular in recent times due to various advantages like greater therapeutic effect, reduced number of prescriptions, lower administrative costs, and an increase in patient compliance. Drug-drug multicomponent adducts could help in combination of drugs at supramolecular level. Two drug-drug eutectics of etodolac with paracetamol (EP) and etodolac with propranolol hydrochloride (EPHC) were successfully designed and synthesized for the first time. These eutectics significantly improved dissolution and material properties. A 6 to 9 fold enhancement in % dissolution efficiency was found at 1min suggesting the fast dissolving capabilities of the eutectic mixtures when compared to plain drug. In addition, eutectic mixtures have shown improved hardness compared to plain drugs. EP and EPHC have shown around 5 fold and 3 fold improvements in hardness respectively at 10MPa when compared to plain etodolac. Cell culture studies have shown improved effects of EP. Western blotting analysis revealed that the said combination successfully reduced various inflammatory mediators like TNF-α, COX-2 and IL-6. Whereas, the eutectic combination EPHC has shown enhanced cytotoxic effects with synergistic combination index and favorable dose reduction index. The generated multi-component systems EP and EPHC with fast dissolving capabilities, improved hardness at lower pressures and synergistic effects represent prospective combinations for effective treatment of osteoarthritis and cancer chemotherapy respectively.


Asunto(s)
Acetaminofén/administración & dosificación , Etodolaco/administración & dosificación , Propranolol/administración & dosificación , Animales , Línea Celular , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Sinergismo Farmacológico , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Difracción de Polvo , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
5.
Int J Pharm ; 506(1-2): 222-36, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27109049

RESUMEN

Curcumin and emu oil derived from emu bird (Dromaius novaehollandiae) has shown promising results against inflammation. However, the delivery of curcumin is hindered due to low solubility and poor permeation. In addition, till date the role of emu oil in drug delivery has not been explored systemically. Hence, the current investigation was designed to evaluate the anti-inflammatory potential of curcumin in combination with emu oil from a nanoemulgel formulation in experimental inflammation and arthritic in vivo models. Nanoemulsion was prepared using emu oil, Cremophor RH 40 and Labrafil M2125CS as oil phase, surfactant and co-surfactant. The optimized curcumin loaded nanoemulsion with emu oil was incorporated into carbopol gel for convenient application by topical route. The anti-inflammatory efficacy was evaluated in carrageenan induced paw edema and FCA induced arthritic rat model in terms of paw swelling, weight indices of the liver and spleen, pathological changes in nuclear factor kappa B, iNOS, COX-2 expression and inflammatory cytokines. Arthritic scoring, paw volume, biochemical, molecular, radiological and histological examinations indicated significant improvement in anti-inflammatory activity with formulations containing curcumin in combination with emu oil compared to pure curcumin. These encouraging results demonstrate the potential of formulations containing curcumin and emu oil combination in rheumatoid arthritis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Curcumina/administración & dosificación , Sistemas de Liberación de Medicamentos , Aceites/química , Administración Tópica , Animales , Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Carragenina/toxicidad , Química Farmacéutica/métodos , Curcumina/farmacología , Modelos Animales de Enfermedad , Edema/tratamiento farmacológico , Edema/patología , Emulsiones , Excipientes/química , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Nanopartículas , Ratas , Ratas Sprague-Dawley , Solubilidad
6.
Colloids Surf B Biointerfaces ; 135: 291-308, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26263217

RESUMEN

Multi-drug therapy is described as a simultaneous or sequential administration of two or more drugs with similar or different mechanisms of action and is recognized as a more efficient solution to combat successfully, various ailments. Polymeric micelles (PMs) are self-assemblies of block copolymers providing numerous opportunities for drug delivery. To date various micellar formulations were studied for delivery of drugs, nutraceuticals and genes; a few of them are in clinical trials. It was observed that there is an immense need for the development of PMs embedding multiple therapeutic agents to combat various ailments, including cancers, HIV/AIDS, malaria, multiple sclerosis, hypertension, infectious diseases, cardiovascular and metabolic diseases, immune disorders and many psychiatric disorders. Several combinations of drug-drug, drug-nutraceutical, drug-gene and drug-siRNA explored to date are detailed in this review, with a special emphasis on their potential and future perspectives. A summary of various preparation methods, characterization techniques and applications of PMs are also provided. This review presents a holistic approach on multi-drug delivery using micellar carriers and emphasizes on the development of therapeutic hybrids embedding novel combinations for safer and effective therapy.


Asunto(s)
Portadores de Fármacos , Micelas , Animales , Sistemas de Liberación de Medicamentos , Excipientes , Humanos , Nanopartículas , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA