Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Transplant ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996969

RESUMEN

Reactivation of BK polyomavirus (BKPyV) can cause significant kidney and bladder disease in immunocompromised patients. There are currently no effective, BKPyV-specific therapies. MAU868 is a novel, human immunoglobulin (Ig) G1 monoclonal antibody that binds the major capsid protein, VP1, of BKPyV with picomolar affinity, neutralizes infection by the 4 major BKPyV genotypes (EC50 ranging from 0.009-0.093 µg/mL; EC90 ranging from 0.102-4.160 µg/mL), and has comparable activity against variants with highly prevalent VP1 polymorphisms. No resistance-associated variants were identified in long-term selection studies, indicating a high in vitro barrier-to-resistance. The high-resolution crystal structure of MAU868 in complex with VP1 pentamer identified 3 key contact residues in VP1 (Y169, R170, and K172). A first-in-human study was conducted to assess the safety, tolerability, and pharmacokinetics of MAU868 following intravenous and subcutaneous administration to healthy adults in a randomized, placebo-controlled, double-blinded, single ascending dose design. MAU868 was safe and well-tolerated. All adverse events were grade 1 and resolved. The pharmacokinetics of MAU868 was typical of a human IgG, with dose-proportional systemic exposure and an elimination half-life ranging between 23 and 30 days. These results demonstrate the potential of MAU868 as a first-in-class therapeutic agent for the treatment or prevention of BKPyV disease.

2.
Elife ; 92020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31960795

RESUMEN

In pursuit of therapeutics for human polyomaviruses, we identified a peptide derived from the BK polyomavirus (BKV) minor structural proteins VP2/3 that is a potent inhibitor of BKV infection with no observable cellular toxicity. The thirteen-residue peptide binds to major structural protein VP1 with single-digit nanomolar affinity. Alanine-scanning of the peptide identified three key residues, substitution of each of which results in ~1000 fold loss of binding affinity with a concomitant reduction in antiviral activity. Structural studies demonstrate specific binding of the peptide to the pore of pentameric VP1. Cell-based assays demonstrate nanomolar inhibition (EC50) of BKV infection and suggest that the peptide acts early in the viral entry pathway. Homologous peptide exhibits similar binding to JC polyomavirus VP1 and inhibits infection with similar potency to BKV in a model cell line. Lastly, these studies validate targeting the VP1 pore as a novel strategy for the development of anti-polyomavirus agents.


Asunto(s)
Antivirales/metabolismo , Virus BK , Proteínas de la Cápside/metabolismo , Virus JC/efectos de los fármacos , Péptidos/metabolismo , Antivirales/química , Antivirales/farmacología , Virus BK/efectos de los fármacos , Virus BK/genética , Virus BK/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Células Cultivadas , Células HEK293 , Humanos , Péptidos/química , Péptidos/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA