Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pathog Dis ; 75(4)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28449081

RESUMEN

Coxiella burnetii is a Gram-negative intracellular pathogen and is the causative agent of the zoonotic disease Q fever. To cause disease, C. burnetii requires a functional type IVB secretion system (T4BSS) to transfer effector proteins required for the establishment and maintenance of a membrane-bound parasitophorous vacuole (PV) and further modulation of host cell process. However, it is not clear how the T4BSS interacts with the PV membrane since neither a secretion pilus nor an extracellular pore forming apparatus has not been described. To address this, we used the acidified citrate cysteine medium (ACCM) along with cell culture infection and immunological techniques to identify the cellular and extracellular localization of T4BSS components. Interestingly, we found that DotA and IcmX were secreted/released in a T4BSS-dependent manner into the ACCM. Analysis of C. burnetii-infected cell lines revealed that DotA colocalized with the host cell marker CD63 (LAMP3) at the PV membrane. In the absence of bacterial protein synthesis, DotA also became depleted from the PV membrane. These data are the first to identify the release/secretion of C. burnetii T4BSS components during axenic growth and the interaction of a T4BSS component with the PV membrane during infection of host cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/metabolismo , Interacciones Huésped-Patógeno , Sistemas de Secreción Tipo IV/metabolismo , Vacuolas/microbiología , Proteínas Bacterianas/análisis , Tetraspanina 30/análisis , Vacuolas/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-28066723

RESUMEN

Coxiella burnetii is the causative agent of Q fever and an obligate intracellular pathogen in nature that survives and grows in a parasitophorous vacuole (PV) within eukaryotic host cells. C. burnetii promotes intracellular survival by subverting apoptotic and pro-inflammatory signaling pathways that are typically regulated by nuclear transcription factor-κB (NF-κB). We and others have demonstrated that C. burnetii NMII proteins inhibit expression of pro-inflammatory cytokines and induce expression of anti-apoptotic genes during infection. Here, we demonstrate that C. burnetii promotes intracellular survival by modulating NF-κB subunit p65 (RelA) phosphorylation, and thus activation, in a Type Four B Secretion System (T4BSS)-dependent manner. Immunoblot analysis of RelA phosphorylated at serine-536 demonstrated that C. burnetii increases NF-κB activation via the canonical pathway. However, RelA phosphorylation levels were even higher in infected cells where bacterial protein or mRNA synthesis was inhibited. Importantly, we demonstrate that inhibition of RelA phosphorylation impairs PV formation and C. burnetii growth. We found that a T4BSS-defective mutant (CbΔdotA) elicited phosphorylated RelA levels similar to those of wild type C. burnetii infection treated with Chloramphenicol. Moreover, cells infected with CbΔdotA or wild type C. burnetii treated with Chloramphenicol showed similar levels of GFP-RelA nuclear localization, and significantly increased localization compared to wild type C. burnetii infection. These data indicate that without de novo protein synthesis and a functional T4BSS, C. burnetii is unable to modulate NF-κB activation, which is crucial for optimal intracellular growth.


Asunto(s)
Coxiella burnetii/metabolismo , FN-kappa B/metabolismo , Fiebre Q/microbiología , Factor de Transcripción ReIA/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular/microbiología , Cloranfenicol/farmacología , Coxiella burnetii/efectos de los fármacos , Coxiella burnetii/genética , Coxiella burnetii/crecimiento & desarrollo , Células Epiteliales/microbiología , Células HeLa , Interacciones Huésped-Parásitos , Humanos , Mutación , Subunidad p52 de NF-kappa B/metabolismo , Fosforilación , Fiebre Q/inmunología , ARN Mensajero/biosíntesis , Transducción de Señal , Sistemas de Secreción Tipo IV/genética , Vacuolas/microbiología , Vía de Señalización Wnt
3.
ISME J ; 8(3): 636-649, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24048226

RESUMEN

We investigated the mechanisms of osmoadaptation in the order Halobacteriales, with special emphasis on Haladaptatus paucihalophilus, known for its ability to survive in low salinities. H. paucihalophilus genome contained genes for trehalose synthesis (trehalose-6-phosphate synthase/trehalose-6-phosphatase (OtsAB pathway) and trehalose glycosyl-transferring synthase pathway), as well as for glycine betaine uptake (BCCT family of secondary transporters and QAT family of ABC transporters). H. paucihalophilus cells synthesized and accumulated ∼1.97-3.72 µmol per mg protein of trehalose in a defined medium, with its levels decreasing with increasing salinities. When exogenously supplied, glycine betaine accumulated intracellularly with its levels increasing at higher salinities. RT-PCR analysis strongly suggested that H. paucihalophilus utilizes the OtsAB pathway for trehalose synthesis. Out of 83 Halobacteriales genomes publicly available, genes encoding the OtsAB pathway and glycine betaine BCCT family transporters were identified in 38 and 60 genomes, respectively. Trehalose (or its sulfonated derivative) production and glycine betaine uptake, or lack thereof, were experimentally verified in 17 different Halobacteriales species. Phylogenetic analysis suggested that trehalose synthesis is an ancestral trait within the Halobacteriales, with its absence in specific lineages reflecting the occurrence of gene loss events during Halobacteriales evolution. Analysis of multiple culture-independent survey data sets demonstrated the preference of trehalose-producing genera to saline and low salinity habitats, and the dominance of genera lacking trehalose production capabilities in permanently hypersaline habitats. This study demonstrates that, contrary to current assumptions, compatible solutes production and uptake represent a common mechanism of osmoadaptation within the Halobacteriales.


Asunto(s)
Betaína/metabolismo , Halobacteriales/fisiología , Proteínas Bacterianas/metabolismo , Ecosistema , Perfilación de la Expresión Génica , Glucosiltransferasas/metabolismo , Halobacteriales/clasificación , Halobacteriales/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Filogenia , Salinidad , Cloruro de Sodio/metabolismo , Trehalosa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA