Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28631094

RESUMEN

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Trastornos del Conocimiento/metabolismo , Procesamiento Proteico-Postraduccional , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Enfermedad de Alzheimer/patología , Animales , Señalización del Calcio , Trastornos del Conocimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Estrés Oxidativo/fisiología , Fosforilación , Reconocimiento en Psicología/fisiología , Retículo Sarcoplasmático/metabolismo
2.
PLoS One ; 10(3): e0120352, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25781952

RESUMEN

Alzheimer's disease (AD) is a complex multifactorial disorder with poorly characterized pathogenesis. Our understanding of this disease would thus benefit from an approach that addresses this complexity by elucidating the regulatory networks that are dysregulated in the neural compartment of AD patients, across distinct brain regions. Here, we use a Systems Biology (SB) approach, which has been highly successful in the dissection of cancer related phenotypes, to reverse engineer the transcriptional regulation layer of human neuronal cells and interrogate it to infer candidate Master Regulators (MRs) responsible for disease progression. Analysis of gene expression profiles from laser-captured neurons from AD and controls subjects, using the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe), yielded an interactome consisting of 488,353 transcription-factor/target interactions. Interrogation of this interactome, using the Master Regulator INference algorithm (MARINa), identified an unbiased set of candidate MRs causally responsible for regulating the transcriptional signature of AD progression. Experimental assays in autopsy-derived human brain tissue showed that three of the top candidate MRs (YY1, p300 and ZMYM3) are indeed biochemically and histopathologically dysregulated in AD brains compared to controls. Our results additionally implicate p53 and loss of acetylation homeostasis in the neurodegenerative process. This study suggests that an integrative, SB approach can be applied to AD and other neurodegenerative diseases, and provide significant novel insight on the disease progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Humanos , Proteínas del Tejido Nervioso/genética , Ratas
3.
J Neurosci ; 31(9): 3186-96, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21368030

RESUMEN

The generation, differentiation, and migration of newborn neurons are critical features of normal brain development that are subject to both extracellular and intracellular regulation. However, the means of such control are only partially understood. Here, we show that expression of RTP801/REDD1, an inhibitor of mTOR (mammalian target of rapamycin) activation, is regulated during neuronal differentiation and that RTP801 functions to influence the timing of both neurogenesis and neuron migration. RTP801 levels are high in embryonic cortical neuroprogenitors, diminished in newborn neurons, and low in mature neurons. Knockdown of RTP801 in vitro and in vivo accelerates cell cycle exit by neuroprogenitors and their differentiation into neurons. It also disrupts migration of rat newborn neurons to the cortical plate and results in the ectopic localization of mature neurons. On the other hand, RTP801 overexpression delays neuronal differentiation. These findings suggest that endogenous RTP801 plays an essential role in temporal control of cortical development and in cortical patterning.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología , Proteínas Represoras/fisiología , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Células PC12 , Ratas , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Células Madre/citología , Células Madre/fisiología , Factores de Tiempo , Factores de Transcripción
4.
Dev Neurobiol ; 67(6): 818-26, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17443827

RESUMEN

Purkinje cells are vulnerable to a number of physical, chemical, and genetic insults during development and maturity. Normal development of these cells depends on the cell-cell interactions between granule and astroglial cell populations. Apoptotic death in Purkinje neurons had been shown to be associated with cell cycle activation, and new DNA synthesis is associated with Purkinje cell death in staggerer and lurcher mutant mice. Here using an in vitro organotypic slice culture model from 9 (P9) and 4 days (P4) old postnatal rats we show that the cyclin dependent kinase (cdk) inhibitors (roscovitine, olomoucine, and flavopiridol) protect the Purkinje cells from cell death. The results are more pronounced in the cerebellar sections from P4 rats. Analysis of Purkinje neurons in sections from P4 rats after 1 week of culturing showed that while there were very limited calbindin positive neurons in the untreated sections the cdk inhibitor treated sections had a notably higher number. Although treatment with cdk inhibitors inhibited Purkinje cell loss significantly, the morphology of these neurons was abnormal, with stunted dendrites and axons. Since the retinoblastoma protein (Rb) is the major pocket protein involved in determining the differentiated state of neurons we examined the effect of over-expressing Rb in the organotypic cultures. Rb overexpression significantly inhibited the Purkinje cell death and these neurons maintained their normal morphology. Thus our studies show that the cell death in Purkinje neurons observed in organotypic cultures is cell cycle dependent and the optimal survival requires Rb.


Asunto(s)
Ciclo Celular/fisiología , Muerte Celular/fisiología , Células de Purkinje/citología , Células de Purkinje/metabolismo , Proteína de Retinoblastoma/biosíntesis , Animales , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inmunohistoquímica , Técnicas de Cultivo de Órganos , Células de Purkinje/patología , Ratas
5.
Neurobiol Aging ; 25(8): 1057-66, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15212831

RESUMEN

In this paper, we examine the hypothesis that 4-hydroxynonenal (HNE), a product of lipid peroxidation, is a key mediator of cell death resulting from beta-amyloid exposure. We revisit the effects of HNE on different neuronal cell types to determine which caspase or caspases are required for HNE-induced death, and to compare these results with the known caspase requirements in other death paradigms. We have previously shown that in a given neuronal cell type different death stimuli can evoke stimulus-specific apoptotic pathways. We now show that HNE treatment of neuronal cells induced dose-dependent death and caspase activity which were blocked by inhibition of caspases. Antisense down-regulation of caspases-3, -7 or -9 provided complete protection from HNE-induced death, as did down-regulation of the caspase regulators APAF-1 and DIABLO. Conversely, this work and our previous studies of three other death paradigms show that caspase-3 is not required for death induced by beta-amyloid, SOD1 down-regulation, or trophic factor deprivation. We also show that HNE accumulated in settings where death does not ensue. We conclude that HNE toxicity is mediated via a caspase-9-dependent pathway but that HNE accumulation need not induce cell death nor is it an obligate mediator of Abeta-induced cell death.


Asunto(s)
Aldehídos/metabolismo , Péptidos beta-Amiloides/metabolismo , Apoptosis/fisiología , Sistema Nervioso Central/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Aldehídos/toxicidad , Péptidos beta-Amiloides/toxicidad , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Factor Apoptótico 1 Activador de Proteasas , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Caspasa 3 , Caspasa 9 , Inhibidores de Caspasas , Caspasas/metabolismo , Sistema Nervioso Central/fisiopatología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Inhibidores Enzimáticos/farmacología , Ratones , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Factores de Crecimiento Nervioso/deficiencia , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Células PC12 , Proteínas/metabolismo , Ratas , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA