Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Stem Cell Reports ; 18(8): 1629-1642, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37084724

RESUMEN

Human induced pluripotent stem cells (iPSCs) are a renewable cell source that can be differentiated into neural progenitor cells (iNPCs) and transduced with glial cell line-derived neurotrophic factor (iNPC-GDNFs). The goal of the current study is to characterize iNPC-GDNFs and test their therapeutic potential and safety. Single-nuclei RNA-seq show iNPC-GDNFs express NPC markers. iNPC-GDNFs delivered into the subretinal space of the Royal College of Surgeons rodent model of retinal degeneration preserve photoreceptors and visual function. Additionally, iNPC-GDNF transplants in the spinal cord of SOD1G93A amyotrophic lateral sclerosis (ALS) rats preserve motor neurons. Finally, iNPC-GDNF transplants in the spinal cord of athymic nude rats survive and produce GDNF for 9 months, with no signs of tumor formation or continual cell proliferation. iNPC-GDNFs survive long-term, are safe, and provide neuroprotection in models of both retinal degeneration and ALS, indicating their potential as a combined cell and gene therapy for various neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Humanos , Ratas , Animales , Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/patología , Roedores , Degeneración Retiniana/terapia , Degeneración Retiniana/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Astrocitos/patología , Modelos Animales de Enfermedad
2.
Thyroid ; 32(7): 849-859, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35350867

RESUMEN

Background: Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor disability disorder that also manifests characteristic abnormal thyroid hormone (TH) levels. AHDS is caused by inactivating mutations in monocarboxylate transporter 8 (MCT8), a specific TH plasma membrane transporter widely expressed in the central nervous system (CNS). MCT8 mutations cause impaired transport of TH across brain barriers, leading to insufficient neural TH supply. There is currently no successful therapy for the neurological symptoms. Earlier work has shown that intravenous (IV), but not intracerebroventricular adeno-associated virus serotype 9 (AAV9) -based gene therapy given to newborn Mct8 knockout (Mct8-/y) male mice increased triiodothyronine (T3) brain content and partially rescued TH-dependent gene expression, suggesting a promising approach to treat this neurological disorder. Methods: The potential of IV delivery of AAV9 carrying human MCT8 was tested in the well-established Mct8-/y/Organic anion-transporting polypeptide 1c1 (Oatp1c1)-/ - double knockout (dKO) mouse model of AHDS, which, unlike Mct8-/y mice, displays both neurological and TH phenotype. Further, as the condition is usually diagnosed during childhood, treatment was given intravenously to P30 mice and psychomotor tests were carried out blindly at P120-P140 after which tissues were collected and analyzed. Results: Systemic IV delivery of AAV9-MCT8 at a juvenile stage led to improved locomotor and cognitive functions at P120-P140, which was accompanied by a near normalization of T3 content and an increased response of positively regulated TH-dependent gene expression in different brain regions examined (thalamus, hippocampus, and parietal cortex). The effects on serum TH concentrations and peripheral tissues were less pronounced, showing only improvement in the serum T3/reverse T3 (rT3) ratio and in liver deiodinase 1 expression. Conclusion: IV administration of AAV9, carrying the human MCT8, to juvenile dKO mice manifesting AHDS has long-term beneficial effects, predominantly on the CNS. This preclinical study indicates that this gene therapy has the potential to ameliorate the devastating neurological symptoms in patients with AHDS.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Transportadores de Ácidos Monocarboxílicos , Simportadores , Animales , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/terapia , Ratones , Transportadores de Ácidos Monocarboxílicos/administración & dosificación , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonía Muscular , Atrofia Muscular , Mutación , Serogrupo , Simportadores/administración & dosificación , Simportadores/deficiencia , Simportadores/genética , Simportadores/metabolismo , Triyodotironina/metabolismo
3.
Glia ; 69(9): 2146-2159, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33956384

RESUMEN

Inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) causes a rare and debilitating form of X-linked psychomotor disability known as Allan Herndon Dudley syndrome (AHDS). One of the most prominent pathophysiological symptoms of MCT8-deficiency is hypomyelination. Here, patient-derived induced pluripotent stem cells (iPSCs) were used to study the role of MCT8 and TH on the maturation of oligodendrocytes. Interestingly, neither MCT8 mutations nor reduced TH affected the in vitro differentiation of control or MCT8-deficient iPSCs into oligodendrocytes. To assess whether patient-derived iPSC-derived oligodendrocyte progenitor cells (iOPCs) could provide myelinating oligodendrocytes in vivo, cells were transplanted into the shiverer mouse corpus callosum where they survived, migrated, and matured into myelinating oligodendrocytes, though the myelination efficiency was reduced compared with control cells. When MCT8-deficient and healthy control iOPCs were transplanted into a novel hypothyroid immunodeficient triple knockout mouse (tKO, mct8-/- ; oatp1c1-/- ; rag2-/- ), they failed to provide behavioral recovery and did not mature into oligodendrocytes in the hypothyroid corpus callosum, demonstrating the critical role of TH transport across brain barriers in oligodendrocyte maturation. We conclude that MCT8 plays a cell autonomous role in oligodendrocyte maturation and that functional TH transport into the central nervous system will be required for developing an effective treatment for MCT8-deficient patients.


Asunto(s)
Células Precursoras de Oligodendrocitos , Simportadores , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , Humanos , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo
4.
J Trauma Acute Care Surg ; 89(5): 955-961, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32472900

RESUMEN

BACKGROUND: How recurrent traumatic brain injury (rTBI) alters brain function years after insult is largely unknown. This study aims to characterize the mechanistic cause for long-term brain deterioration following rTBI using a rat model. METHODS: Eighteen Sprague-Dawley wild-type rats underwent bilateral rTBI using a direct skull impact device or sham treatment, once per week for 5 weeks, and were euthanized 56 weeks after the first injury. Weekly rotarod performance measured motor deficits. Beam walk and grip strength were also assessed. Brain tissue were stained and volume was computed using Stereo Investigator's Cavalieri Estimator. The L5 cortical layer proximal to the injury site was microdissected and submitted for sequencing with count analyzed using R "DESeq2" and "GOStats." Brain-derived neurotrophic factor (BDNF) levels were determined using enzyme-linked immunosorbent assay. RESULTS: Rotarod data demonstrated permanent deficits 1 year after rTBI. Decreased beam walk performance and grip strength was noted among rTBI rodents. Recurrent traumatic brain injury led to thinner cortex and thinner corpus callosum, enlarged ventricles, and differential expression of 72 genes (25 upregulated, 47 downregulated) including dysregulation of those associated with TBI (BDNF, NR4A1/2/3, Arc, and Egr) and downregulation in pathways associated with neuroprotection and neuroplasticity. Over the course of the study, BDNF levels decreased in both rTBI and sham rodents, and at each time point, the decrease in BDNF was more pronounced after rTBI. CONCLUSION: Recurrent traumatic brain injury causes significant long-term alteration in brain health leading to permanent motor deficits, cortical and corpus callosum thinning, and expansion of the lateral ventricles. Gene expression and BDNF analysis suggest a significant drop in pathways associated with neuroplasticity and neuroprotection. Although rTBI may not cause immediate neurological abnormalities, continued brain deterioration occurs after the initial trauma in part due to a decline in genes associated with neuroplasticity and neuroprotection.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Factor Neurotrófico Derivado del Encéfalo/sangre , Encéfalo/patología , Disfunción Cognitiva/etiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/sangre , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Ratas , Recurrencia , Factores de Tiempo
5.
Stem Cells ; 36(7): 1122-1131, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656478

RESUMEN

Early dysfunction of cortical motor neurons may underlie the initiation of amyotrophic lateral sclerosis (ALS). As such, the cortex represents a critical area of ALS research and a promising therapeutic target. In the current study, human cortical-derived neural progenitor cells engineered to secrete glial cell line-derived neurotrophic factor (GDNF) were transplanted into the SOD1G93A ALS rat cortex, where they migrated, matured into astrocytes, and released GDNF. This protected motor neurons, delayed disease pathology and extended survival of the animals. These same cells injected into the cortex of cynomolgus macaques survived and showed robust GDNF expression without adverse effects. Together this data suggests that introducing cortical astrocytes releasing GDNF represents a novel promising approach to treating ALS. Stem Cells 2018;36:1122-1131.


Asunto(s)
Terapia Genética/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Esclerosis Amiotrófica Lateral , Animales , Modelos Animales de Enfermedad , Neuronas Motoras , Ratas
6.
J Trauma Acute Care Surg ; 82(6): 1039-1048, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28520686

RESUMEN

INTRODUCTION: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease linked to repetitive head injuries. Chronic traumatic encephalopathy symptoms include changes in mood, behavior, cognition, and motor function; however, CTE is currently diagnosed only postmortem. Using a rat model of recurrent traumatic brain injury (TBI), we demonstrate rodent deficits that predict the severity of CTE-like brain pathology. METHODS: Bilateral, closed-skull, mild TBI was administered once per week to 35 wild-type rats; eight rats received two injuries (2×TBI), 27 rats received five injuries (5×TBI), and 13 rats were sham controls. To determine clinical correlates for CTE diagnosis, TBI rats were separated based on the severity of rotarod deficits and classified as "mild" or "severe" and further separated into "acute," "short," and "long" based on age at euthanasia (90, 144, and 235 days, respectively). Brain atrophy, phosphorylated tau, and inflammation were assessed. RESULTS: All eight 2×TBI cases had mild rotarod deficiency, 11 5×TBI cases had mild deficiency, and 16 cases had severe deficiency. In one cohort of rats, tested at approximately 235 days of age, balance, rearing, and grip strength were significantly worse in the severe group relative to both sham and mild groups. At the acute time period, cortical thinning, phosphorylated tau, and inflammation were not observed in either TBI group, whereas corpus callosum thinning was observed in both TBI groups. At later time points, atrophy, tau pathology, and inflammation were increased in mild and severe TBI groups in the cortex and corpus callosum, relative to sham controls. These injury effects were exacerbated over time in the severe TBI group in the corpus callosum. CONCLUSIONS: Our model of repeat mild TBI suggests that permanent deficits in specific motor function tests correlate with CTE-like brain pathology. Assessing balance and motor coordination over time may predict CTE diagnosis.


Asunto(s)
Conmoción Encefálica/complicaciones , Encefalopatía Traumática Crónica/diagnóstico , Animales , Atrofia , Encéfalo/patología , Conmoción Encefálica/patología , Encefalopatía Traumática Crónica/patología , Encefalopatía Traumática Crónica/fisiopatología , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Masculino , Destreza Motora , Fosforilación , Equilibrio Postural , Ratas , Ratas Sprague-Dawley , Proteínas tau/metabolismo
7.
J Trauma Acute Care Surg ; 81(6): 1070-1079, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27602892

RESUMEN

BACKGROUND: Concussion injury is the most common form of traumatic brain injury (TBI). How recurrent concussions alter long-term outcomes is poorly understood, especially as related to the development of neurodegenerative disease. We evaluated the functional and pathological consequences of repeated TBI over time in wild type (WT) rats as well as rats harboring the human SOD1 mutation ("SOD1"), a model of familial amyotrophic lateral sclerosis (ALS). METHODS: A total of 42 rats, 26 WT and 16 SOD1, were examined over a study period of 25 weeks (or endpoint). At postnatal day 60, 20 WT and 7 SOD1 rats were exposed to mild, bilateral TBI once per week for either 2 weeks (2×TBI) or 5 weeks (5×TBI) using a controlled cortical impact device. Six WT and nine SOD1 rats underwent sham injury with anesthesia alone. Twenty WT rats were euthanized at 12 weeks after first injury and six WT rats were euthanized at 25 weeks after first injury. SOD1 rats were euthanized when they reached ALS disease endpoint. Weekly body weights and behavioral assessments were performed. Tauopathy in brain tissue was analyzed using immunohistochemistry. RESULTS: 2XTBI injured rats initially demonstrated recovery of motor function but failed to recover to baseline within the 12-week study period. Relative to both 2XTBI and sham controls, 5XTBI rats demonstrated significant deficits that persisted over the 12-week period. SOD1 5XTBI rats reached a peak body weight earlier than sham SOD1 rats, indicating earlier onset of the ALS phenotype. Histologic examination of brain tissue revealed that, in contrast with sham controls, SOD1 and WT TBI rats demonstrated cortical and corpus collosum thinning and tauopathy, which increased over time. CONCLUSIONS: Unlike previous models of repeat brain injury, which demonstrate only transient deficits in motor function, our concussion model of repeat, mild, bilateral TBI induced long-lasting deficits in motor function, decreased cortical thickness, shrinkage of the corpus callosum, increased brain tauopathy, and earlier onset of ALS symptoms in SOD1 rats. This model may allow for a greater understanding of the complex relationship between TBI and neurodegenerative diseases and provides a potential method for testing novel therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Conmoción Encefálica/etiología , Tauopatías/etiología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/psicología , Animales , Conmoción Encefálica/patología , Conmoción Encefálica/psicología , Modelos Animales de Enfermedad , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Recurrencia , Tauopatías/patología , Tauopatías/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA