Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
EClinicalMedicine ; 71: 102578, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606167

RESUMEN

Background: Constipation is prevalent worldwide, significantly increasing healthcare costs and diminishing the quality of life in children affected. Current studies have yielded mixed results regarding the factors associated with constipation, and mainly focusing on patients outside of Asia. Moreover, most of these studies lack focus on the paediatric population. This study aimed to identify the prevalence and associated factors of constipation among children in Asia. Methods: In this systematic review and meta-analysis, we systematically searched PubMed, Scopus, and Cochrane for cohort and cross-sectional studies published from database inception up to October 12, 2022, and continued with manual searching until September 2, 2023. Eligible studies were those that included children in Asia aged 0-18 years old suffering from idiopathic constipation, with prevalence value provided in the English abstract. The analysis included clinical and general population. Children with organic constipation, who had undergone gastrointestinal surgery, or with congenital defects were excluded, as these factors affect the incidence of constipation. Data included in the analysis were extracted from published reports only. The extracted data were pooled using random-effects model to analyse the prevalence of constipation in children in Asia. This study is registered with PROSPERO, CRD42022367122. Findings: Out of 4410 systematically searched studies and 36 manually searched ones, a total of 50 studies were included in the final analysis, encompassing data from 311,660 children residing in Asia. The pooled prevalence of constipation was 12.0% (95% CI 9.3-14.6%, I2 = 99.8%). There was no significant difference in constipation prevalence observed by sex and geographical location. Nonetheless, adolescents and children aged 1-9 years exhibited a significantly higher prevalence constipation compared to infants (p < 0.0001) Additionally, significant differences in constipation rates were observed across various diagnostic methods, population sources, and mental health conditions. Interpretation: Despite the high heterogeneity resulting from varying diagnostic tools or definitions used among studies, our review adds to the literature on constipation among children in Asia. It reveals a notably high prevalence of constipation in this demographic. Diagnostic methods, age, and compromised mental health emerged as significant influencers of constipation among children in Asia, highlighting potential strategies to mitigate constipation prevalence in children in Asia. Funding: The National Science and Technology Council, Taiwan.

2.
Plants (Basel) ; 13(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38475464

RESUMEN

Retinopathy caused by ultraviolet radiation and cancer chemotherapy has increased dramatically in humans due to rapid environmental and social changes. Therefore, it is very important to develop therapeutic strategies to effectively alleviate retinopathy. In China, people often choose dendrobium to improve their eyesight. In this study, we explored how Dendrobium fimbriatum extract (DFE) protects ARPE-19 cells and mouse retinal tissue from damage of ultraviolet (UV) radiation and chemotherapy. We evaluated the antioxidant capacity of DFE using the 1,1-diphenyl-2-trinitophenylhydrazine (DPPH) assay. The protective effects of DEF from UV- and oxaliplatin (OXA)-induced damage were examined in ARPE-19 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and immunofluorescence (IF) stains, and in mouse retinal tissue using immunohistochemistry (IHC) stains. Our results show that DFE has excellent antioxidant capacity. The ARPE-19 cell viability was decreased and the F-actin cytoskeleton structure was damaged by UV radiation and OXA chemotherapy, but both were alleviated after the DFE treatment. Furthermore, DFE treatment can alleviate OXA chemotherapy-induced reduced expressions of rhodopsin and SOD2 and increased expressions of TNF-α and caspase 3 in mouse retinal tissue. Thus, we suggest that DFE can act as suitable treatment for retinopathy through reducing oxidative stress, inflammation, and apoptosis.

3.
Int Immunopharmacol ; 130: 111665, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38367463

RESUMEN

Punicalagin (PUN) was isolated from the peel of pomegranate (Punica granatum L.), is a polyphenol with anti-inflammatory, hepatoprotective, and antioxidant activities. However, it remains unclear whether PUN alleviates the inflammation and anti-inflammatory mechanisms in pro-inflammatory cytokines-induced human keratinocyte HaCaT cells. Here, we investigated that tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture-stimulated HaCaT cells were treated with various concentrations of PUN, followed by analyzed the expression of inflammation-related mediators and evaluate anti-inflammatory-related pathways. Our results demonstrated that PUN ≤ 100 µM did not reduce HaCaT cell viability, and PUN ≥ 3 µM was sufficient to decrease interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 5 (CCL5), CCL17 and CCL20 concentrations. We found that PUN ≥ 10 µM and ≥ 3 µM significantly increased sirtuin 1 (SIRT1) expression and inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. PUN downregulated inflammation-related proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), enhanced nuclear factor erythroid-2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, PUN decreased intercellular adhesion molecule-1 (ICAM-1) expression and inhibited monocyte adhesion to inflamed HaCaT cells. PUN also suppressed inflammatory-related pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in TNF-α/IFN-γ- stimulated HaCat cells. Collectively, there is significant evidence that PUN has effective protective defenses against TNF-α/IFN-γ-induced skin inflammation by enhancing SIRT1 to mediate STAT3 and Nrf2/HO-1 signaling pathway.


Asunto(s)
Taninos Hidrolizables , Granada (Fruta) , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Sirtuina 1/metabolismo , Interferón gamma/metabolismo , Granada (Fruta)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Células HaCaT , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo
4.
Plants (Basel) ; 12(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37960130

RESUMEN

In diabetes mellitus, Ficus formosana has been reported to ameliorate blood sugar levels and inhibit inflammation through its polyphenol and flavonoid contents. However, its effect on diabetic peripheral neuropathy (DPN) remains unknown. This study aimed to investigate the effect of Ficus formosana extract (FFE) on DPN in ovariectomized diabetic mice. Ovariectomized female C57BL/6J mice fed a high-fat diet plus streptozotocin injections to induce type 2 diabetes were orally administered FEE at 20 or 200 mg/kg BW daily, for 6 weeks. To evaluate the pain responses in the paws of the mice, a von Frey filament test and a thermal hyperalgesia test were performed. Additionally, the intraepidermal and sciatic nerve sections were examined, along with an assessment of inflammation- and pain response-related mRNA expression in the paws of the mice. The results showed that the oral administration of both 20 and 200 mg/kg BW FEE significantly alleviated the hypersensitivity of the paw and the abnormal proliferation and rupture of the C fiber, and reduced the mRNA expression of interleukin-1ß, interleukin-6, interferon-γ, cyclooxygenase-2, and voltage-gated sodium channel 1.8 in the sciatic nerve of ovariectomized diabetic mice. We propose that FFE ameliorates peripheral neuropathy by suppressing oxidative damage in ovariectomized diabetic mice.

5.
Nutrients ; 15(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764856

RESUMEN

A high-fat diet (HFD) is a major risk factor for cardiovascular diseases. Many pure compounds have been demonstrated to be effective in treating cardiovascular diseases. In this study, we investigated the alleviating effects of oral ovatodiolide and antcin K (OAK) supplements on HFD-induced cardiovascular dysfunction in apolipoprotein E (ApoE)-knockout mice. Cardiovascular dysfunction was induced in ApoE-knockout mice by feeding them an HFD for 12 weeks. The degree of cardiovascular dysfunction was assessed through echocardiography, hematological and biochemical analyses, and immunofluorescence and immunohistochemical staining. The HFD-fed mice exhibited cardiovascular dysfunction-abnormal blood biochemical index. The arterial wall tissue exhibited the marked deposition of lipids, upregulated expression of vascular cell adhesion molecule-1 and CD36 receptors, and downregulated expression of the ABCA1 receptor. Macrophages isolated from the peritoneal cavity of the mice exhibited increased levels of lipid accumulation, reactive oxygen species, and CD11b expression but reduced mitochondrial membrane potential. The expression of superoxide dismutase 2 was downregulated and that of tumor necrosis factor-α was upregulated in the myocardial tissue. Oral OAK supplements twice a day for 12 weeks significantly mitigated HFD-induced cardiovascular dysfunction in the experimental mice. Oral OAK supplements appear to be a promising strategy for treating HFD-induced cardiovascular dysfunction. The underlying mechanisms may involve the reduction of lipid accumulation in the artery and oxidative stress and inflammation in the cardiovascular tissue.


Asunto(s)
Enfermedades Cardiovasculares , Dieta Alta en Grasa , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo , Apolipoproteínas E/genética
6.
Plants (Basel) ; 12(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447055

RESUMEN

Breast cancer is the most common cancer in women, and chemotherapy is an effective treatment. However, chemotherapy often causes adverse side effects such as cardiotoxicity, myelosuppression, immunodeficiency, and osteoporosis. Our study focused on the alleviating effects of Anoectochilus roxburghii extracts (AREs) on the adverse side effects of chemotherapy in mice with breast cancer. We individually evaluated the antioxidant capacity and cytotoxicity of the AREs using DPPH and MTT assays. We also examined the effects of the AREs on intracellular F-actin, reactive oxygen species (ROS), and the mitochondrial membrane potential (MMP) of 4T1 cancer cells before and after doxorubicin (DOX) treatment. Our results showed that ARE treatment enhanced the effects of DOX chemotherapy by promoting cell morphology damage, oxidative stress, and ROS generation, as well as by reducing MMP in the 4T1 breast cancer cells. By using BALB/c mice with breast cancer with DOX treatment, our results showed that the DOX treatment reduced body weight, blood pressure, and heart rate and induced myelosuppression, immunodeficiency, cardiotoxicity, and osteoporosis. After oral ARE treatment of BALB/c mice with breast cancer, the chemotherapeutic effects of DOX were enhanced, and the adverse side effects of DOX chemotherapy were alleviated. Based on the above results, we suggest that AREs can be used as an adjuvant reliever to DOX chemotherapy in BALB/c mice with breast cancer.

7.
Food Sci Nutr ; 11(4): 1931-1939, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37051351

RESUMEN

Diabetes mellitus (DM) is often accompanied by clinical complications such as sarcopenia. Previous studies have indicated that oxidative stress and insulin resistance (IR) are highly associated with the pathogenesis of diabetic myopathy. α-lipoic acid (ALA), a potent biological antioxidant, exists abundantly in a variety of plants and vegetables. This study aimed to investigate the ameliorative effect of ALA on muscle atrophy in type 2 diabetic rats induced by high-fat diet feeding (HFD) plus streptozotocin (STZ) injection. The HFD/STZ-induced diabetic rats were orally administered 50, 100, or 200 mg/kg body weight ALA once a day for 13 weeks. The results showed that ALA at the tested concentrations significantly increased the soleus muscle mass and muscle fibers in diabetic rats. Proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, were found to decrease in both the serum and muscle of ALA-treated diabetic rats. ALA significantly reduced the protein-expression levels of phosphorylated c-Jun N-terminal kinase (pJNK)/JNK, forkhead box O3 (FOXO3), and muscle ring-finger protein-1 (Murf1); whereas, it enhanced the protein-expression levels of phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (pAKT)/AKT, myogenin determination gene D (MyoD), the mechanistic target of rapamycin (mTOR), and myosin heavy chain (MyHC) in the soleus muscle of diabetic rats. The results from this study suggested that ALA treatment may preserve soleus muscle mass, alleviate muscle atrophy by suppressing the TNF-α/JNK pathway, and ameliorate the PI3K/AKT pathway in HFD/STZ-induced type 2 diabetic rats.

8.
J Food Drug Anal ; 31(4): 626-638, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38526824

RESUMEN

Rhizopus oligosporus was utilized in the solid-state fermentation of Chenopodiumformosanumsprouts (FCS) in a bioreactor. Subsequently, the antioxidant activity of food proteins derived from FCS was investigated. Results showed that glycine-rich peptide (GGGGGKP, G-rich peptide), identified from the <2 kDa FCS proteins, had antioxidant values. According to SwissADME, AllerTOP, ToxinPred, and BIOPEP-UWM analyses, G-rich peptide was identified as safe, non-toxic, and non-allergenic. Afterward, the peptide was examined using in silico and in vitro studies to evaluate its potential alleviating oxidative stress caused by particulate matter. This study proposed plausible mechanisms that involve the binding of G-rich peptide which inhibited phosphorylation of the v-rel avian reticuloendotheliosis viral oncogene homologA(RELA) subunit onNF-κB pathway. The inhibition then resulted in down regulation of NF-κB transcription and genetic expression of inflammatory responses. These findings suggested that G-rich peptide from FCS proteins can potentially alleviate oxidative stress.


Asunto(s)
Antioxidantes , FN-kappa B , Antioxidantes/farmacología , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Expresión Génica , Péptidos/farmacología , Péptidos/metabolismo
9.
Plants (Basel) ; 11(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365265

RESUMEN

Lipid metabolism disorder is the most critical risk factor for atherosclerosis, and the process involves lipid deposition in the arterial intima. In Taiwan, antcin K, an active triterpenoid from the fruiting bodies of Antrodia camphorata, has been considered a potential lipid-lowering agent. Despite this, the possible therapeutic mechanisms of antcin K remain unclear. To explore the crucial role of botanical antcin K in reducing atherosclerotic plaque, we used SVEC4-10 vascular endothelial cells and RAW264.7 macrophages with palm acid oil-induced high-fat damage as our cell models. Our results showed through using the DPPH assay that antcin K had excellent free radical scavenging ability. Antcin K treatment can significantly alleviate the high-fat damage and reduce the levels of inflammatory factors of TNF-α and IL-1ß in vascular endothelial cells and macrophages, as shown through MTT assay and ELISA. Furthermore, antcin K treatment can effectively enhance migration ability and clear lipid deposition in macrophages, as shown by using cell migration assay and oil red O staining. When stained with immunofluorescence, antcin K was shown to significantly decrease the expression of adhesion molecules of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells involved in monocyte migration and inflammation. Antcin K not only reduced the expression of the CD36 scavenger receptor but also augmented the expression of Kruppel-like factor 4 (KLF4) transcription factor in macrophages, which inhibits the transformation of macrophages into foam cells underlying the pathological process of atherosclerosis. Taking our findings into account, we suggested that botanical antcin K could have therapeutic potential for the treatment of atherosclerosis.

10.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563088

RESUMEN

Urolithin A is an active compound of gut-microbiota-derived metabolites of polyphenol ellagic acid that has anti-aging, antioxidative, and anti-inflammatory effects. However, the effects of urolithin A on polyinosinic acid-polycytidylic acid (poly(I:C))-induced inflammation remain unclear. Poly(I:C) is a double-stranded RNA (dsRNA) similar to a virus and is recognized by Toll-like receptor-3 (TLR3), inducing an inflammatory response in immune cells, such as macrophages. Inflammation is a natural defense process of the innate immune system. Therefore, we used poly(I:C)-induced RAW264.7 cells and attenuated the inflammation induced by urolithin A. First, our data suggested that 1-30 µM urolithin A does not reduce RAW264.7 cell viability, whereas 1 µM urolithin A is sufficient for antioxidation and the decreased production of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and C-C chemokine ligand 5. The inflammation-related proteins cyclooxygenase-2 and inducible nitric oxide synthase were also downregulated by urolithin A. Next, 1 µM urolithin A inhibited the levels of interferon (INF)-α and INF-ß. Urolithin A was applied to investigate the blockade of the TLR3 signaling pathway in poly(I:C)-induced RAW264.7 cells. Moreover, the TLR3 signaling pathway, subsequent inflammatory-related pathways, and antioxidation pathways showed changes in nuclear factor-κB (NF-κB) signaling and blocked ERK/mitogen-activated protein kinase (MAPK) signaling. Urolithin A enhanced catalase (CAT) and superoxide dismutase (SOD) activities, but decreased malondialdehyde (MDA) levels in poly(I:C)-induced RAW264.7 cells. Thus, our results suggest that urolithin A inhibits TLR3-activated inflammatory and oxidative-associated pathways in macrophages, and that this inhibition is induced by poly(I:C). Therefore, urolithin A may have antiviral effects and could be used to treat viral-infection-related diseases.


Asunto(s)
Cumarinas , FN-kappa B , Receptor Toll-Like 3 , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Antioxidantes/farmacología , Cumarinas/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Poli I-C/farmacología , Células RAW 264.7 , ARN Bicatenario/farmacología , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Receptor Toll-Like 3/antagonistas & inhibidores , Receptor Toll-Like 3/metabolismo
11.
J Ginseng Res ; 45(6): 654-664, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34764720

RESUMEN

BACKGROUND: Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. METHODS: Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. RESULTS: Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells. CONCLUSION: Ginsenoside Rg3 is a potential immunomodulator that can ameliorate pathological features of asthma by decreasing oxidative stress and inflammation.

12.
Plants (Basel) ; 10(7)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34371651

RESUMEN

Methylglyoxal (MG) is the primary precursor of advanced glycation end products involved in the pathogenesis of inflammation and diabetes. A previous study in our laboratory found anti-inflammatory and anti-hyperglycemic effects of the polyphenol vescalagin (VES) in rats with MG-induced carbohydrate metabolic disorder. The present study further investigated the occurrence of inflammation in pancreatic ß-cells in MG-induced diabetic rats and the mechanism by which VES prevents it. The results showed that VES downregulates the protein expression levels of advanced glycation end product receptors and CCAAT/enhancer binding protein-ß and upregulates the protein expression levels of pancreatic duodenal homeobox-1, nuclear factor erythroid 2-related factor 2 and glyoxalase I from the pancreatic cells. The results also revealed that VES elevates glutathione and antioxidant enzyme contents and then downregulates c-Jun N-terminal kinase and p38 mitogen-activated protein kinases pathways to protect pancreatic ß-cells in MG-administered rats.

13.
Artículo en Inglés | MEDLINE | ID: mdl-34257694

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, and most patients with T2DM develop nonalcoholic fatty liver disease (NAFLD). Both diseases are closely linked to insulin resistance (IR). Our previous studies demonstrated that Ruellia tuberosa L. (RTL) extract significantly enhanced glucose uptake in the skeletal muscles and ameliorated hyperglycemia and IR in T2DM rats. We proposed that RTL might be via enhancing hepatic antioxidant capacity. However, the potent RTL bioactivity remains unidentified. In this study, we investigated the effects of RTL on glucose uptake, IR, and lipid accumulation in vitro to mimic the T2DM accompanied by the NAFLD paradigm. FL83B mouse hepatocytes were treated with tumor necrosis factor-α (TNF-α) to induce IR, coincubated with oleic acid (OA) to induce lipid accumulation, and then, treated with RTL fractions, fractionated with n-hexane or ethyl acetate (EA), from column chromatography, and analyzed by thin-layer chromatography. Our results showed that the ethyl acetate fraction (EAf2) from RTL significantly increased glucose uptake and suppressed lipid accumulation in TNF-α plus OA-treated FL83B cells. Western blot analysis showed that EAf2 from RTL ameliorated IR by upregulating the expression of insulin-signaling-related proteins, including protein kinase B, glucose transporter-2, and peroxisome proliferator-activated receptor alpha in TNF-α plus OA-treated FL83B cells. The results of this study suggest that EAf2 from RTL may improve hepatic glucose uptake and alleviate lipid accumulation by ameliorating and suppressing the hepatic insulin signaling and lipogenesis pathways, respectively, in hepatocytes.

14.
J Nutr Biochem ; 91: 108602, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548473

RESUMEN

Tomatidine is isolated from the leaves and green fruits of some plants in the Solanaceae family, and has been reported to have anti-inflammatory and antitumor effects. Previous studies have found that tomatidine decreases hepatic lipid accumulation via regulation of vitamin D receptor and activation of AMP-activated protein kinase (AMPK) phosphorylation. However, whether tomatidine reduces weight gain and improves nonalcoholic fatty liver disease (NAFLD) remains unclear. In this study, we investigated how tomatidine ameliorates NAFLD in obese mice and evaluated the regulatory mechanism of lipogenesis in hepatocytes. Male C57BL/6 mice were fed a high-fat diet (HFD) to induce obesity and NAFLD, and treated with tomatidine via intraperitoneal injection. In vitro, FL83B hepatocytes were incubated with oleic acid and treated with tomatidine to evaluate lipid metabolism. Our results demonstrate that tomatidine significantly decreases body weight and fat weight compared to HFD-fed mice. In addition, tomatidine decreased hepatic lipid accumulation and improved hepatocyte steatosis in HFD-induced obese mice. We also found that tomatidine significantly regulated serum total cholesterol, fasting blood glucose, low-density lipoprotein, and triglyceride levels, but the serum high-density lipoprotein and adiponectin concentrations were higher than in the HFD-fed obese mice. In vivo and in vitro, tomatidine significantly suppressed the expression of fatty acid synthase and transcription factors involved in lipogenesis, and increased the expression of adipose triglyceride lipase. Tomatidine promoted the sirtuin 1 (sirt1)/AMPK signaling pathway to increase lipolysis and ß-oxidation in fatty liver cells. These findings suggest that tomatidine potentially ameliorates obesity and acts against hepatic steatosis by regulating lipogenesis and the sirt1/AMPK pathway.


Asunto(s)
Antiinflamatorios/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/complicaciones , Tomatina/análogos & derivados , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Tomatina/uso terapéutico
15.
Mediators Inflamm ; 2020: 9421340, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33122970

RESUMEN

Cytokine-induced endothelial dysfunction leads to inflammation and vascular adhesion molecule production in retinal pigment epithelium (RPE) cells. Inflammation is a critical mediator in retinal degeneration (RD) diseases, including age-related macular degeneration (AMD), and RD progression may be prevented through anti-inflammatory activity in RPE cells. The flavonoid polyphenol luteolin (LU) has anti-inflammatory and antidiabetes activities, but its effects regarding retinal protection remain unknown. Here, we examined the ability of luteolin to alleviate markers of inflammation related to RD in cytokine-primed APPE-19 cells. We found that luteolin decreased the levels of interleukin- (IL-) 6, IL-8, soluble intercellular adhesion molecule-1 (sICAM-1), and monocyte chemoattractant protein-1 (MCP-1) and attenuated adherence of the human monocytic leukemia cell line THP-1 to IL-1ß-stimulated ARPE-19 cells. Luteolin also increased anti-inflammatory protein heme oxygenase-1 (HO-1) levels. Interestingly, luteolin induced protein kinase B (AKT) phosphorylation, thus inhibiting nuclear factor- (NF-) κB transfer from cytoplasm into the nucleus and suppressing mitogen-activated protein kinase (MAPK) inflammatory pathways. Furthermore, cotreatment with MAPK inhibitors and luteolin decreased inflammatory cytokine and chemokine levels, and further suppressed THP-1 adhesion. Overall, these results provide evidence that luteolin protects ARPE-19 cells from IL-1ß-stimulated increases of IL-6, IL-8, sICAM-1, and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways, thus ameliorating the inflammatory response.


Asunto(s)
Interleucina-1beta/farmacología , Luteolina/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Hemo-Oxigenasa 1/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células THP-1
16.
Antioxidants (Basel) ; 9(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244835

RESUMEN

Sesamol, isolated from sesame seeds (Sesamum indicum), was previously shown to have antioxidative, anti-inflammatory, and anti-tumor effects. Sesamol also inhibited lipopolysaccharide (LPS)-induced pulmonary inflammatory response in rats. However, it remains unclear how sesamol regulates airway inflammation and oxidative stress in asthmatic mice. This study aimed to investigate the efficacy of sesamol on oxidative stress and airway inflammation in asthmatic mice and tracheal epithelial cells. BALB/c mice were sensitized with ovalbumin, and received oral sesamol on days 14 to 27. Furthermore, BEAS-2B human bronchial epithelial cells were treated with sesamol to investigate inflammatory cytokine levels and oxidative responses in vitro. Our results demonstrated that oral sesamol administration significantly suppressed eosinophil infiltration in the lung, airway hyperresponsiveness, and T helper 2 cell-associated (Th2) cytokine expressions in bronchoalveolar lavage fluid and the lungs. Sesamol also significantly increased glutathione expression and reduced malondialdehyde levels in the lungs of asthmatic mice. We also found that sesamol significantly reduced proinflammatory cytokine levels and eotaxin in inflammatory BEAS-2B cells. Moreover, sesamol alleviated reactive oxygen species formation, and suppressed intercellular cell adhesion molecule-1 (ICAM-1) expression, which reduced monocyte cell adherence. We demonstrated that sesamol showed potential as a therapeutic agent for improving asthma.

17.
Food Sci Nutr ; 7(11): 3742-3750, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31763023

RESUMEN

Hyperglycemia plays crucial roles in vascular disease development, including macrovascular and microvascular diseases from diabetes mellitus (DM). Our previous study demonstrated that Ruellia tuberosa L. (RTL) aqueous and ethanol extracts alleviate hyperglycemia and inhibit insulin resistance in diabetic rats. This study investigated the protective effect of RTL ethanol extract against aorta dysfunction in high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 DM (T2DM) rats. Results showed that RTL ethanol extract (100 and 400 mg/kg BW/day) ameliorated serum lipid profiles, including triglyceride, free fatty acid, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels. It also significantly reduced the level of serum cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 in T2DM rats. Additionally, RTL extract decreased endothelin-1 and endothelial nitric oxide contents, reduced the level of cell adhesion factors, including monocyte chemoattractant protein-1 and cell adhesion factor vascular cell adhesion molecule-1, while decreasing content of damage factors, namely tissue factor and von Willebrand factor in aortic tissues of diabetic rats. Equally noteworthy is that RTL extract enhanced the activity of aorta antioxidative enzymes, including superoxidase dismutase and catalase in diabetic rats, suggesting that RTL ethanol extract may ameliorate aorta dysfunction via enhancing aortic antioxidative enzyme activity, which subsequently suppresses aorta endothelial damage-associated factors in HFD with STZ-induced T2DM rats.

18.
Cells ; 8(6)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226782

RESUMEN

Licochalcone A was isolated from Glycyrrhiza uralensis and previously reported to have antitumor and anti-inflammatory effects. Licochalcone A has also been found to inhibit the levels of Th2-associated cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. However, the molecular mechanism underlying airway inflammation and how licochalcone A regulates oxidative stress in asthmatic mice are elusive. In this study, we investigated whether licochalcone A could attenuate inflammatory and oxidative responses in tracheal epithelial cells, and whether it could ameliorate oxidative stress and airway inflammation in asthmatic mice. Inflammatory human tracheal epithelial (BEAS-2B) cells were treated with licochalcone A to evaluate oxidative responses and inflammatory cytokine levels. In addition, BALB/c mice were sensitized with ovalbumin (OVA) and injected intraperitoneally with licochalcone A (5 or 10 mg/kg). Licochalcone A significantly inhibited reactive oxygen species, eotaxin, and proinflammatory cytokines in BEAS-2B cells. Licochalcone A also decreased intercellular adhesion molecule 1 levels in inflammatory BEAS-2B cells, blocking monocyte cell adherence. We also found that licochalcone A significantly decreased oxidative responses, reduced malondialdehyde levels, and increased glutathione levels in the lungs of OVA-sensitized mice. Furthermore, licochalcone A decreased airway hyper-responsiveness, eosinophil infiltration, and Th2 cytokine production in the BALF. These findings suggest that licochalcone A alleviates oxidative stress, inflammation, and pathological changes by inhibiting Th2-associated cytokines in asthmatic mice and human tracheal epithelial cells. Thus, licochalcone A demonstrated therapeutic potential for improving asthma.


Asunto(s)
Asma/complicaciones , Asma/tratamiento farmacológico , Chalconas/uso terapéutico , Estrés Oxidativo , Sustancias Protectoras/uso terapéutico , Hipersensibilidad Respiratoria/complicaciones , Hipersensibilidad Respiratoria/tratamiento farmacológico , Animales , Especificidad de Anticuerpos , Asma/patología , Líquido del Lavado Bronquioalveolar/citología , Adhesión Celular/efectos de los fármacos , Chalconas/farmacología , Quimiocinas/metabolismo , Colágeno/metabolismo , Ciclooxigenasa 2/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Eosinófilos/efectos de los fármacos , Eosinófilos/patología , Femenino , Glutatión/metabolismo , Células Caliciformes/efectos de los fármacos , Células Caliciformes/patología , Humanos , Hiperplasia , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Malondialdehído/metabolismo , Ratones Endogámicos BALB C , Ovalbúmina , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células THP-1
19.
Cells ; 8(5)2019 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083505

RESUMEN

Licochalcone A is a chalcone isolated from Glycyrrhiza uralensis. It showed anti-tumor and anti-inflammatory properties in mice with acute lung injuries and regulated lipid metabolism through the activation of AMP-activated protein kinase (AMPK) in hepatocytes. However, the effects of licochalcone A on reducing weight gain and improving nonalcoholic fatty liver disease (NAFLD) are unclear. Thus, the present study investigated whether licochalcone A ameliorated weight loss and lipid metabolism in the liver of high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD to induce obesity and NAFLD, and then were injected intraperitoneally with licochalcone A. In another experiment, a fatty liver cell model was established by incubating HepG2 hepatocytes with oleic acid and treating the cells with licochalcone A to evaluate lipid metabolism. Our results demonstrated that HFD-induced obese mice treated with licochalcone A had decreased body weight as well as inguinal and epididymal adipose tissue weights compared with HFD-treated mice. Licochalcone A also ameliorated hepatocyte steatosis and decreased liver tissue weight and lipid droplet accumulation in liver tissue. We also found that licochalcone A significantly regulated serum triglycerides, low-density lipoprotein, and free fatty acids, and decreased the fasting blood glucose value. Furthermore, in vivo and in vitro, licochalcone A significantly decreased expression of the transcription factor of lipogenesis and fatty acid synthase. Licochalcone A activated the sirt-1/AMPK pathway to reduce fatty acid chain synthesis and increased lipolysis and ß-oxidation in hepatocytes. Licochalcone A can potentially ameliorate obesity and NAFLD in mice via activation of the sirt1/AMPK pathway.


Asunto(s)
Chalconas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Obesidad/inducido químicamente , Sirtuina 1/metabolismo
20.
Food Sci Nutr ; 6(8): 2414-2422, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30510742

RESUMEN

Ruellia tuberosa L. (RTL) exhibits a wide range of phytochemical activities, for example, on treatment of diabetes mellitus (DM), in Orient. There is, however, few study regarding the effect of RTL on glycemic-related homeostasis in type 2 DM (T2DM). We investigated the effect of RTL aqueous and ethanolic extracts on hypoglycemia in high-fat diet (HFD)-fed plus streptozotocin (STZ)-induced T2DM rats, and examined the effect of RTL on glucose uptake in tumor necrosis factor-α-induced insulin-resistant mouse C2C12 myoblasts, a mouse skeletal muscle cell line. The administration of 100 or 400 mg kg BW-1 day-1 of RTL aqueous or ethanolic extracts once a day for 4 weeks significantly ameliorated hyperglycemia, hyperinsulinemia, and the insulin resistance (IR) index in diabetic rats. RTL either aqueous or ethanolic extract at a concentration of 25-800 µg/ml significantly improved glucose uptake in insulin-resistant mouse C2C12 myoblasts, indicating inhibiting the IR in skeletal muscles. These evidences suggest that RTL ameliorates hyperglycemia in HFD/STZ-induced T2DM rats may be attributed to the alleviation of IR in skeletal muscles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA