Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cell Sci ; 134(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34357401

RESUMEN

Myxoid liposarcoma is caused by a chromosomal translocation resulting in a fusion protein comprised of the N terminus of FUS (fused in sarcoma) and the full-length transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein, also known as DDIT3). FUS functions in RNA metabolism, and CHOP is a stress-induced transcription factor. The FUS-CHOP fusion protein causes unique gene expression and oncogenic transformation. Although it is clear that the FUS segment is required for oncogenic transformation, the mechanism of FUS-CHOP-induced transcriptional activation is unknown. Recently, some transcription factors and super enhancers have been proposed to undergo liquid-liquid phase separation and form membraneless compartments that recruit transcription machinery to gene promoters. Since phase separation of FUS depends on its N terminus, transcriptional activation by FUS-CHOP could result from the N terminus driving nuclear phase transitions. Here, we characterized FUS-CHOP in cells and in vitro, and observed novel phase-separating properties relative to unmodified CHOP. Our data indicate that FUS-CHOP forms phase-separated condensates that colocalize with BRD4, a marker of super enhancer condensates. We provide evidence that the FUS-CHOP phase transition is a novel oncogenic mechanism and potential therapeutic target for myxoid liposarcoma. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas de Ciclo Celular , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína FUS de Unión a ARN/genética , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética
2.
Acta Neuropathol ; 142(3): 515-536, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34061233

RESUMEN

Mutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS. Here, we employed RNA-sequencing technology in Drosophila brains expressing FUS to identify significantly altered genes and pathways involved in FUS-mediated neurodegeneration. We observed the expression levels of DEAD-Box Helicase 17 (DDX17) to be significantly downregulated in response to mutant FUS in Drosophila and human cell lines. Mutant FUS recruits nuclear DDX17 into cytoplasmic stress granules and physically interacts with DDX17 through the RGG1 domain of FUS. Ectopic expression of DDX17 reduces cytoplasmic mislocalization and sequestration of mutant FUS into cytoplasmic stress granules. We identified DDX17 as a novel regulator of the DNA damage response pathway whose upregulation repairs defective DNA damage repair machinery caused by mutant neuronal FUS ALS. In addition, we show DDX17 is a novel modifier of FUS-mediated neurodegeneration in vivo. Our findings indicate DDX17 is downregulated in response to mutant FUS, and restoration of DDX17 levels suppresses FUS-mediated neuropathogenesis and toxicity in vivo.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , ARN Helicasas DEAD-box/genética , Reparación del ADN/genética , Proteína FUS de Unión a ARN/toxicidad , Animales , Línea Celular , Gránulos Citoplasmáticos/química , Daño del ADN , Drosophila , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/genética , Análisis de Secuencia de ARN
3.
Protein Sci ; 30(7): 1337-1349, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33547841

RESUMEN

The RNA-binding protein fused in sarcoma (FUS) assembles via liquid-liquid phase separation (LLPS) into functional RNA granules and aggregates in amyotrophic lateral sclerosis associated neuronal inclusions. Several studies have demonstrated that posttranslational modification (PTM) can significantly alter FUS phase separation and aggregation, particularly charge-altering phosphorylation of the nearly uncharged N-terminal low complexity domain of FUS (FUS LC). However, the occurrence and impact of N-terminal acetylation on FUS phase separation remains unexplored, even though N-terminal acetylation is the most common PTM in mammals and changes the charge at the N-terminus. First, we find that FUS is predominantly acetylated in two human cell types and stress conditions. Next, we show that recombinant FUS LC can be acetylated when co-expressed with the NatA complex in Escherichia coli. Using NMR spectroscopy, we find that N-terminal acetylated FUS LC (FUS LC Nt-Ac) does not notably alter monomeric FUS LC structure or motions. Despite no difference in structure, Nt-Ac-FUS LC phase separates more avidly than unmodified FUS LC. More importantly, N-terminal acetylation of FUS LC reduces aggregation. Our findings highlight the importance of N-terminal acetylation of proteins that undergo physiological LLPS and pathological aggregation.


Asunto(s)
Agregado de Proteínas , Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN/química , Acetilación , Dominios Proteicos
4.
Mol Biol Cell ; 31(23): 2522-2536, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877292

RESUMEN

Fused in Sarcoma (FUS) is a ubiquitously expressed protein that can phase-separate from nucleoplasm and cytoplasm into distinct liquid-droplet structures. It is predominantly nuclear and most of its functions are related to RNA and DNA metabolism. Excessive persistence of FUS within cytoplasmic phase-separated assemblies is implicated in the diseases amyotrophic lateral sclerosis and frontotemporal dementia. Phosphorylation of FUS's prion-like domain (PrLD) by nuclear phosphatidylinositol 3-kinase-related kinase (PIKK)-family kinases following DNA damage was previously shown to alter FUS's liquid-phase and solid-phase transitions in cell models and in vitro. However, proteomic data suggest that FUS's PrLD is phosphorylated at numerous additional sites, and it is unknown if other non-PIKK and nonnuclear kinases might be influencing FUS's phase transitions. Here we evaluate disease mutations and stress conditions that increase FUS accumulation into cytoplasmic phase-separated structures. We observed that cytoplasmic liquid-phase structures contain FUS phosphorylated at novel sites, which occurred independent of PIKK-family kinases. We engineered phosphomimetic substitutions within FUS's PrLD and observed that mimicking a few phosphorylation sites strongly inhibited FUS solid-phase aggregation, while minimally altering liquid-phase condensation. These effects occurred independent of the exact location of the phosphomimetic substitutions, suggesting that modulation of PrLD phosphorylation may offer therapeutic strategies that are specific for solid-phase aggregation observed in disease.


Asunto(s)
Transición de Fase/efectos de los fármacos , Priones/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Daño del ADN , Humanos , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Priones/genética , Agregación Patológica de Proteínas , Procesamiento Proteico-Postraduccional , Proteómica , Proteína FUS de Unión a ARN/fisiología
5.
Mol Biol Cell ; 29(15): 1786-1797, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897835

RESUMEN

FUS (fused in sarcoma) is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. We previously showed that phosphorylation of FUS's prionlike domain suppressed phase separation and toxic aggregation, proportionally to the number of added phosphates. However, phosphorylation of FUS's prionlike domain was previously reported to promote its cytoplasmic localization, potentially favoring pathological behavior. Here we used mass spectrometry and human cell models to further identify phosphorylation sites within FUS's prionlike domain, specifically following DNA-damaging stress. In total, 28 putative sites have been identified, about half of which are DNA-dependent protein kinase (DNA-PK) consensus sites. Custom antibodies were developed to confirm the phosphorylation of two of these sites (Ser-26 and Ser-30). Both sites were usually phosphorylated in a subpopulation of cellular FUS following a variety of DNA-damaging stresses but not necessarily equally or simultaneously. Importantly, we found DNA-PK-dependent multiphosphorylation of FUS's prionlike domain does not cause cytoplasmic localization.


Asunto(s)
Núcleo Celular/metabolismo , Daño del ADN , Priones/química , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Secuencia de Aminoácidos , Aminoglicósidos/farmacología , Línea Celular , Núcleo Celular/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Dominios Proteicos , Transporte de Proteínas/efectos de los fármacos
6.
Int J Mol Sci ; 19(3)2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29547565

RESUMEN

Subcellular mislocalization and aggregation of the human FUS protein occurs in neurons of patients with subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. FUS is one of several RNA-binding proteins that can functionally self-associate into distinct liquid-phase droplet structures. It is postulated that aberrant interactions within the dense phase-separated state can potentiate FUS's transition into solid prion-like aggregates that cause disease. FUS is post-translationally modified at numerous positions, which affect both its localization and aggregation propensity. These modifications may influence FUS-linked pathology and serve as therapeutic targets.


Asunto(s)
Proteínas Priónicas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Demencia Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/química , Cuerpos de Inclusión/metabolismo , Mutación , Neuronas/metabolismo , Proteínas Priónicas/química , Proteína FUS de Unión a ARN/química
7.
EMBO J ; 36(20): 2951-2967, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28790177

RESUMEN

Neuronal inclusions of aggregated RNA-binding protein fused in sarcoma (FUS) are hallmarks of ALS and frontotemporal dementia subtypes. Intriguingly, FUS's nearly uncharged, aggregation-prone, yeast prion-like, low sequence-complexity domain (LC) is known to be targeted for phosphorylation. Here we map in vitro and in-cell phosphorylation sites across FUS LC We show that both phosphorylation and phosphomimetic variants reduce its aggregation-prone/prion-like character, disrupting FUS phase separation in the presence of RNA or salt and reducing FUS propensity to aggregate. Nuclear magnetic resonance spectroscopy demonstrates the intrinsically disordered structure of FUS LC is preserved after phosphorylation; however, transient domain collapse and self-interaction are reduced by phosphomimetics. Moreover, we show that phosphomimetic FUS reduces aggregation in human and yeast cell models, and can ameliorate FUS-associated cytotoxicity. Hence, post-translational modification may be a mechanism by which cells control physiological assembly and prevent pathological protein aggregation, suggesting a potential treatment pathway amenable to pharmacologic modulation.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/patología , Línea Celular , Demencia Frontotemporal/patología , Humanos , Espectroscopía de Resonancia Magnética , Fosforilación , Agregación Patológica de Proteínas , Conformación Proteica , Proteína FUS de Unión a ARN/química
8.
Cold Spring Harb Protoc ; 2017(2)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148884

RESUMEN

Infectious proteins (prions) are usually self-templating filamentous protein polymers (amyloids). Yeast prions are genes composed of protein and, like the multiple alleles of DNA-based genes, can have an array of "variants," each a distinct self-propagating amyloid conformation. Like the lethal mammalian prions and amyloid diseases, yeast prions may be lethal, or only mildly detrimental, and show an array of phenotypes depending on the protein involved and the prion variant. Yeast prions are models for both rare mammalian prion diseases and for several very common amyloidoses such as Alzheimer's disease, type 2 diabetes, and Parkinson's disease. Here, we describe their detection and characterization using genetic, cell biological, biochemical, and physical methods.


Asunto(s)
Amiloide/genética , Amiloide/metabolismo , Modelos Biológicos , Priones/genética , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Brain Res ; 1649(Pt B): 189-200, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27181519

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease caused by loss of upper and lower motor neurons. The majority of ALS cases are classified as sporadic (80-90%), with the remaining considered familial based on patient history. The last decade has seen a surge in the identification of ALS-causing genes - including TARDBP (TDP-43), FUS, MATR3 (Matrin-3), C9ORF72 and several others - providing important insights into the molecular pathways involved in pathogenesis. Most of the protein products of ALS-linked genes fall into two functional categories: RNA-binding/homeostasis and protein-quality control (i.e. autophagy and proteasome). The RNA-binding proteins tend to be aggregation-prone with low-complexity domains similar to the prion-forming domains of yeast. Many also incorporate into stress granules (SGs), which are cytoplasmic ribonucleoprotein complexes that form in response to cellular stress. Mutant forms of TDP-43 and FUS perturb SG dynamics, lengthening their cytoplasmic persistence. Recent evidence suggests that SGs are regulated by the autophagy pathway, suggesting a unifying connection between many of the ALS-linked genes. Persistent SGs may give rise to intractable aggregates that disrupt neuronal homeostasis, thus failure to clear SGs by autophagic processes may promote ALS pathogenesis. This article is part of a Special Issue entitled SI:Autophagy.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Autofagia , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Proteína C9orf72 , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Proteínas de Transporte de Membrana , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Factor de Transcripción TFIIIA/metabolismo , Ubiquitinas/metabolismo , Proteína que Contiene Valosina
10.
Acta Neuropathol ; 131(4): 605-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26728149

RESUMEN

Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/genética , Neuronas Motoras/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Factores de Transcripción/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Antibacterianos/farmacología , Arsenitos/farmacología , Encéfalo/citología , Proteínas Portadoras/metabolismo , Células Cultivadas , Gránulos Citoplasmáticos/efectos de los fármacos , ADN Helicasas , Proteínas de Unión al ADN/genética , Doxiciclina/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína FUS de Unión a ARN/genética , Ratas , Ratas Sprague-Dawley , Compuestos de Sodio/farmacología , Factores de Transcripción/genética
11.
Am J Pathol ; 185(10): 2641-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26435412

RESUMEN

Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bencimidazoles/farmacología , Benzoatos/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Hígado/efectos de los fármacos , Proteína Amiloide A Sérica/metabolismo , Reacción de Fase Aguda/metabolismo , Animales , Lesiones Encefálicas/patología , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Telmisartán
12.
PLoS One ; 10(8): e0136362, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317359

RESUMEN

Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥ 100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Péptidos/metabolismo , Agregado de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Proteína Huntingtina , Proteínas del Tejido Nervioso/genética , Células PC12 , Péptidos/genética , Proteínas de Unión al ARN/genética , Ratas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Microbiol Mol Biol Rev ; 79(1): 1-17, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25631286

RESUMEN

A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered ß-sheet-rich protein aggregates with ß-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.


Asunto(s)
Amiloide/fisiología , Priones , Levaduras , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Hongos/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Priones/química , Priones/genética , Priones/fisiología , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras/genética , Levaduras/metabolismo
14.
Prion ; 7(6): 464-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24366087

RESUMEN

The capacity to polymerize into amyloid fibrils is common to many proteins. While some proteins naturally form these fibrils to serve functional roles, amyloid is usually associated with pathogenic processes in which specific proteins aberrantly aggregate within cells or tissues. Though the contribution of amyloid fibrils to actual disease pathogenesis is not always clear, one possibility is that the titration of essential proteins from solution into aggregates contributes to the cellular degeneration common to many amyloid diseases. Using mammalian and yeast model systems, we recently showed that the common biophysical properties of amyloid aggregates--including strong resistance to dissolution--enable stringent purification and identification of both amyloid-forming and amyloid-associated proteins directly from cells. Strikingly, many proteins that were previously implicated in formation or clearance of intracellular aggregates, including several stress granule components, were found to co-aggregate with amyloid formed by a polyglutamine-expanded huntingtin fragment. This direct evaluation of proteins within aggregates can help identify new amyloid-forming proteins, as well as proteins that can indirectly contribute to disease mechanisms.


Asunto(s)
Amiloide/análisis , Amiloide/metabolismo , Animales , Humanos , Péptidos/análisis , Péptidos/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
15.
J Biol Chem ; 288(38): 27100-27111, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23926098

RESUMEN

The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin.


Asunto(s)
Amiloide , Péptidos , Priones , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Amiloide/genética , Amiloide/metabolismo , Animales , Humanos , Células PC12 , Péptidos/genética , Péptidos/metabolismo , Priones/genética , Priones/metabolismo , Proteómica/métodos , Ratas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dodecil Sulfato de Sodio/química , Urea/química
16.
Hum Mol Genet ; 22(6): 1193-205, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23257289

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an uncommon neurodegenerative disease caused by degeneration of upper and lower motor neurons. Several genes, including SOD1, TDP-43, FUS, Ubiquilin 2, C9orf72 and Profilin 1, have been linked with the sporadic and familiar forms of ALS. FUS is a DNA/RNA-binding protein (RBP) that forms cytoplasmic inclusions in ALS and frontotemporal lobular degeneration (FTLD) patients' brains and spinal cords. However, it is unknown whether the RNA-binding ability of FUS is required for causing ALS pathogenesis. Here, we exploited a Drosophila model of ALS and neuronal cell lines to elucidate the role of the RNA-binding ability of FUS in regulating FUS-mediated toxicity, cytoplasmic mislocalization and incorporation into stress granules (SGs). To determine the role of the RNA-binding ability of FUS in ALS, we mutated FUS RNA-binding sites (F305L, F341L, F359L, F368L) and generated RNA-binding-incompetent FUS mutants with and without ALS-causing mutations (R518K or R521C). We found that mutating the aforementioned four phenylalanine (F) amino acids to leucines (L) (4F-L) eliminates FUS RNA binding. We observed that these RNA-binding mutations block neurodegenerative phenotypes seen in the fly brains, eyes and motor neurons compared with the expression of RNA-binding-competent FUS carrying ALS-causing mutations. Interestingly, RNA-binding-deficient FUS strongly localized to the nucleus of Drosophila motor neurons and mammalian neuronal cells, whereas FUS carrying ALS-linked mutations was distributed to the nucleus and cytoplasm. Importantly, we determined that incorporation of mutant FUS into the SG compartment is dependent on the RNA-binding ability of FUS. In summary, we demonstrate that the RNA-binding ability of FUS is essential for the neurodegenerative phenotype in vivo of mutant FUS (either through direct contact with RNA or through interactions with other RBPs).


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Cuerpos de Inclusión/metabolismo , Mutación Missense , Proteína FUS de Unión a ARN/metabolismo , Secuencias de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Modelos Animales de Enfermedad , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Cuerpos de Inclusión/genética , Neuronas Motoras/metabolismo , Transporte de Proteínas , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética
17.
Prion ; 5(4): 250-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22052354

RESUMEN

In recent years there have been several reports of human neurodegenerative diseases that involve protein misfolding being modeled in the yeast Saccharomyces cerevisiae. This review summarizes recent advances in understanding the specific mechanisms underlying intracellular neuronal pathology during Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), including SOD1, TDP-43 and FUS protein inclusions and the potential of these proteins to be involved in pathogenic prion-like mechanisms. More specifically, we focus on findings from yeast systems that offer tremendous possibilities for screening for genetic and chemical modifiers of disease-related proteotoxicity.


Asunto(s)
Amiloide/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Amiloide/química , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal/patología , Humanos , Modelos Moleculares , Priones/química , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
18.
Protein Cell ; 2(3): 223-36, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21452073

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the premature loss of motor neurons. While the underlying cellular mechanisms of neuron degeneration are unknown, the cytoplasmic aggregation of several proteins is associated with sporadic and familial forms of the disease. Both wild-type and mutant forms of the RNA-binding proteins FUS and TDP-43 accumulate in cytoplasmic inclusions in the neurons of ALS patients. It is not known if these so-called proteinopathies are due to a loss of function or a gain of toxicity resulting from the formation of cytoplasmic aggregates. Here we present a model of FUS toxicity using the yeast Saccharomyces cerevisiae in which toxicity is associated with greater expression and accumulation of FUS in cytoplasmic aggregates. We find that FUS and TDP-43 have a high propensity for co-aggregation, unlike the aggregation patterns of several other aggregation-prone proteins. Moreover, the biophysical properties of FUS aggregates in yeast are distinctly different from many amyloidogenic proteins, suggesting they are not composed of amyloid.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Multimerización de Proteína , Proteína FUS de Unión a ARN/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proliferación Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Proteínas de Unión al ADN/genética , Detergentes/farmacología , Humanos , Cinética , Péptidos/metabolismo , Priones/química , Priones/metabolismo , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Biol Chem ; 286(10): 8385-8393, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21148556

RESUMEN

Most amyloids are pathological, but fragments of Pmel17 form a functional amyloid in vertebrate melanosomes essential for melanin synthesis and deposition. We previously reported that only at the mildly acidic pH (4-5.5) typical of melanosomes, the repeat domain (RPT) of human Pmel17 can form amyloid in vitro. Combined with the known presence of RPT in the melanosome filaments and the requirement of this domain for filament formation, we proposed that RPT may be the core of the amyloid formed in vivo. Although most of Pmel17 is highly conserved across a broad range of vertebrates, the RPT domains vary dramatically, with no apparent homology in some cases. Here, we report that the RPT domains of mouse and zebrafish, as well as a small splice variant of human Pmel17, all form amyloid specifically at mildly acid pH (pH ∼5.0). Protease digestion, mass per unit length measurements, and solid-state NMR experiments suggest that amyloid of the mouse RPT has an in-register parallel ß-sheet architecture with two RPT molecules per layer, similar to amyloid of the Aß peptide. Although there is no sequence conservation between human and zebrafish RPT, amyloid formation at acid pH is conserved.


Asunto(s)
Amiloide/metabolismo , Antígeno gp100 del Melanoma/metabolismo , Amiloide/química , Amiloide/genética , Animales , Humanos , Concentración de Iones de Hidrógeno , Ratones , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Pez Cebra , Antígeno gp100 del Melanoma/química , Antígeno gp100 del Melanoma/genética
20.
J Biol Chem ; 284(44): 30148-58, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19748895

RESUMEN

To understand the role of a crowded physiological environment in the pathogenesis of neurodegenerative diseases, we report the following. 1) The formation of fibrous aggregates of the human Tau fragment Tau-(244-441), when hyperphosphorylated by glycogen synthase kinase-3beta, is dramatically facilitated by the addition of crowding agents. 2) Fibril formation of nonphosphorylated Tau-(244-441) is only promoted moderately by macromolecular crowding. 3) Macromolecular crowding dramatically accelerates amyloid formation by human prion protein. A sigmoidal equation has been used to fit these kinetic data, including published data of human alpha-synuclein, yielding lag times and apparent rate constants for the growth of fibrils for these amyloidogenic proteins. These biochemical data indicate that crowded cell-like environments significantly accelerate the nucleation step of fibril formation of human Tau fragment/human prion protein/human alpha-synuclein (a significant decrease in the lag time). These results can in principle be predicted based on some known data concerning protein concentration effects on fibril formation both in vitro and in vivo. Furthermore, macromolecular crowding causes human prion protein to form short fibrils and nonfibrillar particles with lower conformational stability and higher protease resistance activity, compared with those formed in dilute solutions. Our data demonstrate that a crowded physiological environment could play an important role in the pathogenesis of neurodegenerative diseases by accelerating amyloidogenic protein misfolding and inducing human prion fibril fragmentation, which is considered to be an essential step in prion replication.


Asunto(s)
Amiloide/química , Amiloidosis/etiología , Pliegue de Proteína , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Cinética , Fosforilación , Priones/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA