Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
2.
Biomed Environ Sci ; 37(5): 445-456, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38843918

RESUMEN

Objective: The leptin receptor, encoded by the LEPR gene, is involved in tumorigenesis. A potential functional variant of LEPR, rs1137101 (Gln223Arg), has been extensively investigated for its contribution to the risk of digestive system (DS) cancers, but results remain conflicting rather than conclusive. Here, we performed a case-control study and subsequent meta-analysis to examine the association between rs1137101 and DS cancer risk. Methods: A total of 1,727 patients with cancer (gastric/liver/colorectal: 460/480/787) and 800 healthy controls were recruited. Genotyping of rs1137101 was conducted using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay and confirmed using Sanger sequencing. Twenty-four eligible studies were included in the meta-analysis. Results: After Bonferroni correction, the case-control study revealed that rs1137101 was significantly associated with the risk of liver cancer in the Hubei Chinese population. The meta-analysis suggested that rs1137101 is significantly associated with the risk of overall DS, gastric, and liver cancer in the Chinese population. Conclusion: The LEPR rs1137101 variant may be a genetic biomarker for susceptibility to DS cancers (especially liver and gastric cancer) in the Chinese population.


Asunto(s)
Neoplasias del Sistema Digestivo , Predisposición Genética a la Enfermedad , Receptores de Leptina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , China/epidemiología , Neoplasias del Sistema Digestivo/genética , Polimorfismo de Nucleótido Simple , Receptores de Leptina/genética , Factores de Riesgo , Pueblos del Este de Asia/genética
3.
Perfusion ; : 2676591241253459, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733257

RESUMEN

BACKGROUND: Perioperative myocardial injury (PMI) is associated with increased mobility and mortality after noncoronary cardiac surgery. However, limited studies have developed a predictive model for PMI. Therefore, we used hybrid feature selection (FS) methods to establish a predictive model for PMI in noncoronary cardiac surgery with cardiopulmonary bypass (CPB). METHODS: This was a single-center retrospective study conducted at the Fuwai Hospital in China. Patients aged 18-70 years who underwent elective noncoronary surgery with CPB at our institution from December 2018 to April 2021 were enrolled. The primary outcome was PMI, defined as the postoperative cardiac troponin I (cTnI) levels exceeding 220 times of upper reference limit (URL). Statistical analyses were conducted by Python (Python Software Foundation, version 3.9.7 and integrated development environment Jupyter Notebook 1.1.0) and SPSS software version 26.0 (IBM Corp., Armonk, New York, USA). RESULTS: A total of 1130 patients were eventually eligible for this study. The incidence of PMI was 20.3% (229/1130) in the overall patients, 20.6% (163/791) in the training dataset, and 19.5% (66/339) in the testing dataset. The logistic regression model performed the best AUC of 0.6893 (95 CI%: 0.6371-0.7382) by the traditional selection method, and the random forest model performed the best AUC of 0.6937 (95 CI%: 0.6416-0.7423) by the union of Wrapper and Embedded method, and the CatBoost model performed the best AUC of 0.6828 (95 CI%: 0.6304-0.7320) by the union of Embedded and forward logistic regression technique, and the Naïve Bayes model achieved the best AUC with 0.7254 (95 CI%: 0.6746-0.7723) by forwarding logistic regression method. Moreover, the decision tree, KNeighborsClassifier, and support vector machine models performed the worse AUC in all selection forms. Furthermore, the SHapley Additive exPlanations plot showed that prolonged CPB, aortic clamp time, and preoperative low platelets count were strongly related to the PMI risk. CONCLUSIONS: In total, four category feature selection methods were utilized, comprising five individual selection techniques and 15 combined methods. Notably, the combination of logistic regression and embedded methods demonstrated outstanding performance in predicting PMI risk. We also concluded that the machine learning model, including random forest, catboost, and Naive Bayes, were suitable candidates for establishing PMI predictive model. Nevertheless, additional investigation and validation are imperative for substantiating these finding.

4.
J Oral Microbiol ; 16(1): 2344272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698893

RESUMEN

Objective: To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods: In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results: Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion: Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.

5.
Toxicol Res (Camb) ; 13(3): tfae072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737339

RESUMEN

Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor ß1 (TGF-ß1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-ß1/Smad2/3 pathways.

6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710513

RESUMEN

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Asunto(s)
Lesión Pulmonar Aguda , Hemo-Oxigenasa 1 , Lipopolisacáridos , Pulmón , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Masculino , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/genética , Inflamación/inducido químicamente , Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Cancer ; 15(11): 3625-3632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817878

RESUMEN

Objective: Due to inconsistent results in earlier investigations regarding the relationship between vitamin D and prostate-specific antigen (PSA), this study was conducted to gain a deeper understanding of the association between vitamin D and PSA. Methods: A total of 7174 male samples with 25(OH)D, PSA, and other variables were obtained from the National Health and Nutrition Examination Survey (NHANES) database. Three models, created through stepwise logistic regression, were employed to examine the dose-response association between PSA and 25(OH)D. Subsequently, restricted cubic spline analysis (RCS) was used to explore the nonlinear association between 25(OH)D and PSA. The study also compared the performance of four machine learning models in predicting PSA levels. Results: The dose-response relationship indicated a negative impact of high 25(OH)D levels on PSA (p for trend 0.05). The odds ratio (OR) of Q4 (7.73 with 95% CI (0.26, 15.76)) was significantly higher than Q1 (6.23 with 95% CI (0.24, 12.57)). OR values in Q2 and Q3 were less than 1 (Q2= 0.57 with 95% CI (-6.37, 8.04) and Q3= 0.26 with 95% CI (-5.94, 6.86)), suggesting a potential protective effect of 25(OH)D on PSA. RCS analysis revealed a U-shaped relationship between blood 25(OH)D levels and PSA, with serum 25(OH)D in the range of 20-134 ng/ml showing a potential decrease in PSA levels. Above this range, an increase in 25(OH)D might elevate PSA levels. Age (2.67 with 95% CI 2.24 to 3.1) and BMI (17.52 with 95% CI 7.65 to 26.32), along with the OR of obesity (10.36 with 95% CI 0.68 to 20.18), were identified as potential PSA risk factors. Among the machine learning models, the random forest algorithm performed the best in predicting PSA levels. Conclusion: This study revealed a U-shaped relationship between 25(OH)D and PSA, with PSA potentially declining when 25(OH)D is between 20 and 134 ng/mL and possibly rising above this range. The random forest method proved effective in both predicting PSA levels and guiding vitamin D dosage.

8.
Cell Death Discov ; 10(1): 171, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600077

RESUMEN

Decidual macrophages (dMϕs) play critical roles in regulation of immune-microhomeostasis at maternal-fetal interface during pregnancy, but the underlying molecular mechanisms are still unclear. In this study, it was found that litter size and fetal weight were significantly reduced, whereas the rate of embryo resorption was increased in miR-3074-5p knock-in (3074-KI) pregnant mice, compared to that of wild-type (WT) pregnant mice. Plasma levels of pro-inflammatory cytokines in 3074-KI pregnant mice were also significantly elevated compared to WT pregnant mice at GD7.5. The quantity of M1-Mϕs in uterine tissues of 3074-KI pregnant mice was significantly increased compared to WT pregnant mice at GD13.5. Estrogen receptor-α (ERα) was validated to be a target of miR-3074-5p. Either miR-3074-5p overexpression or ERα knockdown promoted transcriptional activity of NF-κB/p65, induced M1-polarization and pyroptosis of THP1-derived Mϕs, accompanied with increased intracellular levels of cleaved Caspase-1, cleaved IL-1ß, NLRP3, cleaved GSDMD and ASC aggregation. Furthermore, ERα could not only bind to NLRP3 or ASC directly, but also inhibit the interaction between NLRP3 and ASC. The endometrial miR-3074-5p expression level at the middle secretory stage of repeated implantation failure (RIF) patients was significantly decreased compared to that of control fertile women. These data indicated that miR-3074-5p could promote M1 polarization and pyroptosis of Mϕs via activation of NLRP3 inflammasome by targeting ERα, and the dysregulation of miR-3074-5p expression in dMϕs might damage the embryo implantation and placentation by interfering with inflammatory microenvironment at the maternal-fetal interface during early pregnancy.

9.
J Biol Chem ; 300(6): 107299, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641063

RESUMEN

ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.

10.
World J Clin Oncol ; 15(3): 391-410, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38576597

RESUMEN

BACKGROUND: Ferroptosis has recently been associated with multiple degenerative diseases. Ferroptosis induction in cancer cells is a feasible method for treating neoplastic diseases. However, the association of iron proliferation-related genes with prognosis in HER2+ breast cancer (BC) patients is unclear. AIM: To identify and evaluate fresh ferroptosis-related biomarkers for HER2+ BC. METHODS: First, we obtained the mRNA expression profiles and clinical information of HER2+ BC patients from the TCGA and METABRIC public databases. A four-gene prediction model comprising PROM2, SLC7A11, FANCD2, and FH was subsequently developed in the TCGA cohort and confirmed in the METABRIC cohort. Patients were stratified into high-risk and low-risk groups based on their median risk score, an independent predictor of overall survival (OS). Based on these findings, immune infiltration, mutations, and medication sensitivity were analyzed in various risk groupings. Additionally, we assessed patient prognosis by combining the tumor mutation burden (TMB) with risk score. Finally, we evaluated the expression of critical genes by analyzing single-cell RNA sequencing (scRNA-seq) data from malignant vs normal epithelial cells. RESULTS: We found that the higher the risk score was, the worse the prognosis was (P < 0.05). We also found that the immune cell infiltration, mutation, and drug sensitivity were different between the different risk groups. The high-risk subgroup was associated with lower immune scores and high TMB. Moreover, we found that the combination of the TMB and risk score could stratify patients into three groups with distinct prognoses. HRisk-HTMB patients had the worst prognosis, whereas LRisk-LTMB patients had the best prognosis (P < 0.0001). Analysis of the scRNA-seq data showed that PROM2, SLC7A11, and FANCD2 were significantly differentially expressed, whereas FH was not, suggesting that these genes are expressed mainly in cancer epithelial cells (P < 0.01). CONCLUSION: Our model helps guide the prognosis of HER2+ breast cancer patients, and its combination with the TMB can aid in more accurate assessment of patient prognosis and provide new ideas for further diagnosis and treatment.

11.
Phytomedicine ; 128: 155489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569295

RESUMEN

BACKGROUND AND PURPOSE: Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS: 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS: MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION: STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.


Asunto(s)
Aterosclerosis , Proteínas de Transporte de Catión , Medicamentos Herbarios Chinos , Ferroptosis , Factor de Transcripción STAT6 , Proteína 1 Supresora de la Señalización de Citocinas , Animales , Ferroptosis/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Factor de Transcripción STAT6/metabolismo , Masculino , Medicamentos Herbarios Chinos/farmacología , Ratones , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores de LDL/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados
12.
J Clin Transl Hepatol ; 12(3): 327-331, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38426190

RESUMEN

Hepatocyte nuclear factor 1ß (HNF1ß) is essential for biliary development, while its genetic defect triggers the dysplasia of interlobular bile ducts, leading to life-threatening hepatitis and cholestasis. To date, this disorder has mainly been documented in neonates. Here, we report a case of cholestasis in an adult patient caused by a de novo HNF1ß mutation. A liver biopsy revealed remarkable shrinkage of the portal area accompanied by a decrease or absence of interlobular bile ducts, veins, and arteries in the portal area. Our case showed that an HNF1ß defect could induce late-onset cholestasis with paucity of the portal area in adulthood.

13.
World J Gastrointest Endosc ; 16(2): 55-63, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38464818

RESUMEN

BACKGROUND: Colorectal polyps (CPs) are frequently occurring abnormal growths in the colorectum, and are a primary precursor of colorectal cancer (CRC). The triglyceride-glucose (TyG) index is a novel marker that assesses metabolic health and insulin resistance, and has been linked to gastrointestinal cancers. AIM: To investigate the potential association between the TyG index and CPs, as the relation between them has not been documented. METHODS: A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan, Jiangsu Province, China, between January 2020 and December 2022 were included in this retrospective cross-sectional study. After excluding individuals who did not meet the eligibility criteria, descriptive statistics were used to compare characteristics between patients with and without CPs. Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs. The TyG index was calculated using the following formula: Ln [triglyceride (mg/dL) × glucose (mg/dL)/2]. The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports. RESULTS: A nonlinear relation between the TyG index and the prevalence of CPs was identified, and exhibited a curvilinear pattern with a cut-off point of 2.31. A significant association was observed before the turning point, with an odds ratio (95% confidence interval) of 1.70 (1.40, 2.06), P < 0.0001. However, the association between the TyG index and CPs was not significant after the cut-off point, with an odds ratio (95% confidence interval) of 0.57 (0.27, 1.23), P = 0.1521. CONCLUSION: Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals, suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.

14.
J Hazard Mater ; 468: 133812, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368684

RESUMEN

Although selenium (Se) and cadmium (Cd) often coexist naturally in the soil of China, the health risks to local residents consuming Se-Cd co-enriched foods are unknown. In the present study, we investigated the effects of chemical-based selenocystine (SeCys2) on cadmium chloride-induced human hepatocarcinoma (HepG2) cell injury and plant (Cardamine hupingshanensis)-derived SeCys2 against Cd-induced liver injury in mice. We found that chemical- and plant-based SeCys2 showed protective effects against Cd-induced HepG2 cell injury and liver damage in mice, respectively. Compared with Cd intervention group, co-treatment with chemical- or plant-based SeCys2 both alleviated liver toxicity and ferroptosis by decreasing ferrous iron, acyl-CoA synthetase long-chain (ACSL) family member 4, lysophosphatidylcholine acyltransferase 3, reactive oxygen species and lipid peroxide levels, and increasing ACSL3, peroxisome proliferator-activated receptor α, solute carrier family 7 member 11 (SLC7A11) and glutathione and glutathione peroxidase 4 (GPX4) levels. In conclusion, chemical- and plant-based SeCys2 alleviated Cd-induced hepatotoxicity and ferroptosis by regulating SLC7A11/GPX4 signaling and lipid peroxidation. Our findings indicate that potential Cd toxicity from consuming foods grown in Se- and Cd-rich soils should be re-evaluated. This study offers a new perspective for the development of SeCys2-enriched agricultural products.


Asunto(s)
Cistina/análogos & derivados , Hepatopatías , Compuestos de Organoselenio , Selenio , Humanos , Ratones , Animales , Cadmio/toxicidad , Antioxidantes/farmacología , Selenio/farmacología
15.
Drug Des Devel Ther ; 18: 223-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312992

RESUMEN

Background: The potential myocardial protective effect of nicorandil (NICD) in patients undergoing percutaneous coronary intervention has been established. However, its efficacy in the context of cardiac surgery remains controversial. The present study aimed to evaluate the myocardial protective effect of perioperative NICD use in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Methods: We retrospectively gathered data from patients undergoing cardiac bypass surgery between 12/2018 and 04/2021 in Fuwai Hospital. Subsequently, the patients were divided into two groups, NICD group and non-nicorandil (non-NICD) group. A 1, 3 propensity score matching (PSM) was conducted. The primary outcome was the incidence of myocardial injury. The secondary outcomes included the mechanical ventilation (MV) duration, intensive care unit (ICU) length of stay (LOS), hospital LOS, duration of chest drainage, the drainage volume, the total cost, the incidence of acute kidney injury (AKI), and the incidence of acute liver injury (ALI). Subsequently, we divided the entire population into two distinct subgroups based on their administration of NICD, and performed a comprehensive subgroup analysis. Results: A total of 2406 patients were ultimately included in the study. After PSM, 250 patients in NICD group and 750 patients in non-NICD group were included in the analysis. Perioperative NICD reduced the incidence of myocardial injury (47.2% versus 38.8%, P=0.025). Our subgroup analysis revealed that preoperative NICD administration not only provided myocardial protection benefits (45.7% vs 35.8%, OR 0.66, 95% CI [0.45-0.97], P=0.041), but also demonstrated statistically significant reduction in ALI, the ICU and hospital LOS, and the duration of chest drainage (all P<0.05). Conclusion: The perioperative NICD administration may confer myocardial protection in patients undergoing cardiac surgery with CPB. Furthermore, the preoperative utilization of NICD has the potential to mitigate the incidence of postoperative ALI, a reduction in the ICU and hospital LOS, and the duration of chest drainage.


Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Humanos , Estudios Retrospectivos , Nicorandil/farmacología , Nicorandil/uso terapéutico , Puente Cardiopulmonar/efectos adversos , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Unidades de Cuidados Intensivos , Lesión Renal Aguda/prevención & control , Factores de Riesgo
16.
Malar J ; 23(1): 48, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360586

RESUMEN

BACKGROUND: Immunogenic cell death (ICD) is a type of regulated cell death that plays a crucial role in activating the immune system in response to various stressors, including cancer cells and pathogens. However, the involvement of ICD in the human immune response against malaria remains to be defined. METHODS: In this study, data from Plasmodium falciparum infection cohorts, derived from cross-sectional studies, were analysed to identify ICD subtypes and their correlation with parasitaemia and immune responses. Using consensus clustering, ICD subtypes were identified, and their association with the immune landscape was assessed by employing ssGSEA. Differentially expressed genes (DEGs) analysis, functional enrichment, protein-protein interaction networks, and machine learning (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify ICD-associated hub genes linked with high parasitaemia. A nomogram visualizing these genes' correlation with parasitaemia levels was developed, and its performance was evaluated using receiver operating characteristic (ROC) curves. RESULTS: In the P. falciparum infection cohort, two ICD-associated subtypes were identified, with subtype 1 showing better adaptive immune responses and lower parasitaemia compared to subtype 2. DEGs analysis revealed upregulation of proliferative signalling pathways, T-cell receptor signalling pathways and T-cell activation and differentiation in subtype 1, while subtype 2 exhibited elevated cytokine signalling and inflammatory responses. PPI network construction and machine learning identified CD3E and FCGR1A as candidate hub genes. A constructed nomogram integrating these genes demonstrated significant classification performance of high parasitaemia, which was evidenced by AUC values ranging from 0.695 to 0.737 in the training set and 0.911 to 0.933 and 0.759 to 0.849 in two validation sets, respectively. Additionally, significant correlations between the expressions of these genes and the clinical manifestation of P. falciparum infection were observed. CONCLUSION: This study reveals the existence of two ICD subtypes in the human immune response against P. falciparum infection. Two ICD-associated candidate hub genes were identified, and a nomogram was constructed for the classification of high parasitaemia. This study can deepen the understanding of the human immune response to P. falciparum infection and provide new targets for the prevention and control of malaria.


Asunto(s)
Muerte Celular Inmunogénica , Malaria Falciparum , Humanos , Relevancia Clínica , Plasmodium falciparum/genética , Estudios Transversales , Malaria Falciparum/genética , Biología Computacional , Aprendizaje Automático
17.
Physiol Rep ; 12(3): e15939, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316422

RESUMEN

Recurrent spontaneous abortion (RSA) is a serious condition that adversely affects women's health. Differentially expressed proteins (DEPs) in plasma of patients experiencing RSA is helpful to find new therapeutic targets and identified with mass spectrometry. In 57 DEPs, 21 were upregulated and 36 were downregulated in RSA. Gene ontology analyses indicated that identified DEPs were associated with cell proliferation, including significantly downregulated insulin-like growth factor binding protein 2 (IGFBP2). Immunohistochemical result using clinical decidual tissues also showed that IGFBP2 expression was significantly decreased in RSA trophoblasts. Cell proliferation assay indicated that IGFBP2 treatment increased the proliferation and mRNA expressions of PCNA and Ki67 in trophoblast cells. Transcriptome sequencing experiments and Kyoto Encyclopedia of Genes and Genomes analyses revealed that gene expression for components in PI3K-Akt pathway in trophoblasts was significantly upregulated following IGFBP2 treatment. To confirm bioinformatics findings, we did cell-based experiments and found that treatment of inhibitors for insulin-like growth factor (IGF)-1 receptor-PI3K-Akt pathway significantly reduced IGFBP2-induced trophoblast cell proliferation and mRNA expressions of PCNA and Ki67. Our findings suggest that IGFBP2 may increase trophoblast proliferation through the PI3K-Akt signaling pathway to affect pregnancy outcomes and that IGFBP2 may be a new target for future research and treatment of RSA.


Asunto(s)
Aborto Habitual , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Proteínas Proto-Oncogénicas c-akt , Femenino , Humanos , Embarazo , Aborto Habitual/metabolismo , Proliferación Celular , Antígeno Ki-67/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proyectos Piloto , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Trofoblastos/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética
18.
Phytomedicine ; 126: 155395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340578

RESUMEN

BACKGROUND: The interplay of tumor-associated macrophages (TAMs) and tumor cells plays a key role in the development of hepatocellular carcinoma (HCC) and provides an important target for HCC therapy. The communication between them is still on the investigation. Bufalin, the active component derived from the traditional Chinese medicine (TCM) Chansu, has been evidenced to possess anti-HCC activity by directly suppressing tumor cells, while its immunomodulatory effect on the tumor microenvironment (TME) is unclear. PURPOSE: To explore the mechanism of M2 TAM-governed tumor cell proliferation and the inhibitory effect of bufalin on HCC growth by targeting M2 macrophages. METHODS: Morphology and marker proteins were detected to evaluate macrophage polarization via microscopy and flow cytometry. Cellular proliferation and malignant transformation of HCC cells cultured with macrophage conditioned medium (CM) or bufalin-primed M2-CM, were assessed by cell viability, colony formation and soft agar assays. Regulations of gene transcription and protein expression and release were determined by RT-qPCR, immunoblotting, immunoprecipitation, ELISA and immunofluorescence. Tumorigenicity upon bufalin treatment was verified in orthotopic and diethylnitrosamine-induced HCC mouse model. RESULTS: In this study, we first verified that M2 macrophages secreted Wnt1, which acted as a mediator to trigger ß-catenin activation in HCC cells, leading to cellular proliferation. Bufalin suppressed HCC cell proliferation and malignant transformation by inhibiting Wnt1 release in M2 macrophages, and dose-dependently inhibited HCC progression in mice. Mechanistically, bufalin specially targeted to block Wnt1 transcription, thus inactivating ß-catenin signaling cascade in HCC cells and leading to tumor regression in HCC mouse model. CONCLUSION: These results clearly reveal a novel potential of bufalin to suppress HCC through immunomodulation, and shed light on a new M2 macrophage-based modality of HCC immunotherapy, which additively enhances direct tumor-inhibitory efficacy of bufalin.


Asunto(s)
Bufanólidos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , beta Catenina/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Carcinogénesis , Microambiente Tumoral
19.
Microbiol Spectr ; 12(2): e0203923, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189331

RESUMEN

The purpose of this study is to establish a clinical prediction model to discriminate patients at high risk of Klebsiella pneumoniae (KP) colonization before allogeneic hematopoietic stem cell transplantation (allo-HSCT) and evaluate the impact of KP colonization on clinical outcomes after allo-HSCT. We retrospectively collected data from 2,157 consecutive patients receiving allo-HSCT between January 2018 and March 2022. KP colonization was defined as a positive test for KP from a pharyngeal or anal swab before allo-HSCT. Logistic regression was used to build a clinical prediction model. Cox regression analyses were performed to explore the effect of KP colonization on clinical outcomes. Among all the inpatients, 166 patients had KP colonization and 581 with no positive pathogenic finding before transplantation. Seven candidate predictors were entered into the final prediction model. The prediction model had an area under the curve of 0.775 (95% CI 0.723-0.828) in the derivation cohort and 0.846 (95% CI: 0.790-0.902) in the validation cohort. Statistically significantly different incidence rates were observed among patient groups with clinically predicted low, medium, and high risk for KP infection (P < 0.001). The presence of KP colonization delayed platelet engraftment (P < 0.001) and patients with KP colonization were more likely to develop KP bloodstream infections within 100 days after allo-HSCT (P < 0.0001). Patients with KP colonization had higher non-relapse mortality (P = 0.032), worse progression-free survival (P = 0.0027), and worse overall survival within 100 days after allo-HSCT (P = 0.013). Our findings suggest that increased awareness of risks associated with pre-transplantation bacterial colonization is warranted.IMPORTANCESeveral studies have identified that Klebsiella pneumoniae (KP) is among the most common and deadly pathogens for patients in hospital intensive care units and those receiving transplantation. However, there are currently no studies that evaluate the impact of KP colonization to patients undergoing allogeneic hematopoietic stem cell transplantation. Our results confirm that pre-existing KP colonization is relatively common in a hematology transplant ward setting and negatively affects post-transplantation prognosis. Our clinical prediction model for KP colonization can support early intervention in patients at high risk to avoid subsequent bloodstream infections and improve survival outcomes. Altogether, our data suggest that increased awareness of risks associated with pre-transplantation bacterial colonization is warranted. Future studies are needed to confirm these findings and to test early intervention strategies for patients at risk of complications from KP infection.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Sepsis , Humanos , Klebsiella pneumoniae , Estudios Retrospectivos , Modelos Estadísticos , Pronóstico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos
20.
Metallomics ; 16(2)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38263542

RESUMEN

Four Ru(II)-centered isomeric complexes [RuCl(5cqn)(Val)(NO)] (1-4) were synthesized with 5cqn (5-chloro-8-hydroxyquinoline) and chiral Val (Val = L- or D-valine) as co-ligand, and their structures were confirmed using the X-ray diffraction method. The cytotoxicity and photodynamic activity of the isomeric complexes and their human serum albumin (HSA) complex adducts were evaluated. Both the isomeric complexes and their HSA complex adducts significantly affected HeLa cell proliferation, with an IC50 value in the range of 0.3-0.5 µM. The photo-controlled release of nitric oxide (NO) in solution was confirmed using time-resolved Fourier transform infrared and electron paramagnetic resonance spectroscopy techniques. Furthermore, photoinduced NO release in living cells was observed using a selective fluorescent probe for NO. Moreover, the binding constants (Kb) of the complexes with HSA were calculated to be 0.17-1.98 × 104 M-1 and the average number of binding sites (n) was found to be close to 1, it can serve as a crucial carrier for delivering metal complexes. The crystal structure of the HSA complex adduct revealed that one [RuCl(H2O)(NO)(Val)]+ molecule binds to a pocket in domain I. This study provides insight into possible mechanism of metabolism and potential applications for nitrosylruthenium complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Antineoplásicos/farmacología , Óxido Nítrico , Albúmina Sérica Humana/metabolismo , Células HeLa , Sitios de Unión , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA