Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 19(3): e0298055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38530810

RESUMEN

BACKGROUND: LINC00324 is a long-stranded non-coding RNA, which is aberrantly expressed in various cancers and is associated with poor prognosis and clinical features. It involves multiple oncogenic molecular pathways affecting cell proliferation, migration, invasion, and apoptosis. However, the expression, function, and mechanism of LINC00324 in glioma have not been reported. MATERIAL AND METHODS: We assessed the expression of LINC00324 of LINC00324 in glioma patients based on data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) to identify pathways involved in LINC00324-related glioma pathogenesis. RESULTS: Based on our findings, we observed differential expression of LINC00324 between tumor and normal tissues in glioma patients. Our analysis of overall survival (OS) and disease-specific survival (DSS) indicated that glioma patients with high LINC00324 expression had a poorer prognosis compared to those with low LINC00324 expression. By integrating clinical data and genetic signatures from TCGA patients, we developed a nomogram to predict OS and DSS in glioma patients. Gene set enrichment analysis (GSEA) revealed that several pathways, including JAK/STAT3 signaling, epithelial-mesenchymal transition, STAT5 signaling, NF-κB activation, and apoptosis, were differentially enriched in glioma samples with high LINC00324 expression. Furthermore, we observed significant correlations between LINC00324 expression, immune infiltration levels, and expression of immune checkpoint-related genes (HAVCR2: r = 0.627, P = 1.54e-77; CD40: r = 0.604, P = 1.36e-70; ITGB2: r = 0.612, P = 6.33e-7; CX3CL1: r = -0.307, P = 9.24e-17). These findings highlight the potential significance of LINC00324 in glioma progression and suggest avenues for further research and potential therapeutic targets. CONCLUSION: Indeed, our results confirm that the LINC00324 signature holds promise as a prognostic predictor in glioma patients. This finding opens up new possibilities for understanding the disease and may offer valuable insights for the development of targeted therapies.


Asunto(s)
Glioma , Humanos , Apoptosis , Antígenos CD18 , Antígenos CD40 , Proliferación Celular , Pronóstico , ARN no Traducido/genética
2.
Adv Mater ; 35(52): e2307193, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951210

RESUMEN

The immune response in cancer reflects a series of carefully regulated events; however, current tumor immunotherapies typically address a single key aspect to enhance anti-tumor immunity. In the present study, a nanoplatform (Fe3 O4 @IR820@CpG)-based immunotherapy strategy that targets the multiple key steps in cancer-immunity cycle is developed: 1) promotes the release of tumor-derived proteins (TDPs), including tumor-associated antigens and pro-immunostimulatory factors), in addition to the direct killing effect, by photothermal (PTT) and photodynamic therapy (PDT); 2) captures the released TDPs and delivers them, together with CpG (a Toll-like receptor 9 agonist) to antigen-presenting cells (APCs) to promote antigen presentation and T cell activation; 3) enhances the tumor-killing ability of T cells by combining with anti-programmed death ligand 1 antibody (α-PD-L1), which collectively advances the outstanding of the anti-tumor effects on colorectal, liver and breast cancers. The broad-spectrum anti-tumor activity of Fe3 O4 @IR820@CpG with α-PD-L1 demonstrates that optimally manipulating anti-cancer immunity not singly but as a group provides promising clinical strategies.


Asunto(s)
Neoplasias de la Mama , Vacunas , Humanos , Femenino , Antígeno B7-H1/metabolismo , Linfocitos T , Inmunoterapia/métodos , Rayos Láser , Línea Celular Tumoral
3.
J Intensive Med ; 3(3): 275-282, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37533812

RESUMEN

Background: The predictive value of red blood cell distribution width (RDW) for mortality in patients with sepsis-induced acute kidney injury (SI-AKI) remains unclear. The present study aimed to investigate the potential association between RDW at admission and outcomes in patients with SI-AKI. Methods: The Medical Information Mart for Intensive Care (MIMIC)-IV (version 2.0) database, released in June of 2022, provides medical data of SI-AKI patients to conduct our related research. Based on propensity score matching (PSM) method, the main risk factors associated with mortality in SI-AKI were evaluated using Cox proportional hazards regression analysis to construct a predictive nomogram. The concordance index (C-index) and decision curve analysis were used to validate the predictive ability and clinical utility of this model. Patients with SI-AKI were classified into the high- and low-RDW groups according to the best cut-off value obtained by calculating the maximum value of the Youden index. Results: A total of 7574 patients with SI-AKI were identified according to the filter criteria. Compared with the low-RDW group, the high-RDW group had higher 28-day (9.49% vs. 31.40%, respectively, P <0.001) and 7-day (3.96% vs. 13.93%, respectively, P <0.001) mortality rates. Patients in the high-RDW group were more prone to AKI progression than those in the low-RDW group (20.80% vs. 13.60%, respectively, P <0.001). Based on matched patients, we developed a nomogram model that included age, white blood cells, RDW, combined hypertension and presence of a malignant tumor, treatment with vasopressor, dialysis, and invasive ventilation, sequential organ failure assessment, and AKI stages. The C-index for predicting the probability of 28-day survival was 0.799. Decision curve analysis revealed that the model with RDW offered greater net benefit than that without RDW. Conclusion: The present findings demonstrated the importance of RDW, which improved the predictive ability of the nomogram model for the probability of survival in patients with SI-AKI.

4.
Cancer Biomark ; 24(2): 183-193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30689556

RESUMEN

BACKGROUND: Bladder cancer is one of the most common genitourinary malignancies, with a high rate of recurrence and progression. The prognosis for patients with bladder cancer, especially muscle-invasive bladder cancer, remains poor despite systemic therapy. OBJECTIVE: To explore the underlying disease mechanisms and identify more effective biomarkers for bladder cancer. METHODS: Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis were applied to identify hub genes correlated with the bladder cancer progression. Survival analyses were then conducted to identify potential biomarkers correlated with the prognosis of bladder cancer. Finally, validation and analysis of these potential biomarkers were conducted by a series of bioinformatics analyses. RESULTS: Based on the results of weighted gene co-expression network analysis and protein-protein interaction network analysis, ten hub genes closely correlated with bladder cancer progression were identified in the relevant module. Survival analyses of these genes indicated that elevated expressions of six potential biomarkers (COL3A1, FN1, COL5A1, FBN1, COL6A1 and THBS2) were significantly associated with a worse overall survival. Furthermore, these 6 potential biomarkers were validated in association with the progression of bladder cancer. Bladder cancer samples with higher expression of these genes were most significantly enriched in gene set associated with ECM-receptor interaction. CONCLUSIONS: This study identified several biomarkers associated with bladder cancer progression and prognosis. As novel findings, these may have important clinical implications for diagnosis, treatment and prognosis prediction.


Asunto(s)
Biomarcadores de Tumor/genética , Redes Reguladoras de Genes , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Biología Computacional , Progresión de la Enfermedad , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Pronóstico , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Análisis de Supervivencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-25953553

RESUMEN

Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration.


Asunto(s)
Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quitosano , Colágeno , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Microesferas , Ácido Poliglicólico/química , Serratia marcescens/efectos de los fármacos , Piel Artificial , Staphylococcus aureus/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/química
6.
Cell Biochem Biophys ; 71(2): 951-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25370297

RESUMEN

This study was set to explore a new strategy for repairing skin wounds, co-transplantation of mesenchymal stem cells from Wharton's Jelly of the human umbilical cord (hUC-Wharton's jelly-MSCs) and microparticles. A mixture of hUC-Wharton's jelly-MSCs and microparticles was co-transplanted to 10-mm diameter, full-thickness, mid-dorsal, excisional skin wounds of mice. After 7, 14, and 21 days, the tissue sections were sampled for reconstruction analysis and histological examination. Our results showed that hUC-Wharton's jelly-MSCs possess the potentials for multi-directional differentiation. After co-transplantation, there was remarkable development of newborn skin and its appendages. Newly generated layers of epidermis, sebaceous glands, hair follicle, and sweat glands were observed. This promising innovative strategy could significantly increase the quality of repair and regeneration of skin after injuries.


Asunto(s)
Micropartículas Derivadas de Células/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Piel/lesiones , Cicatrización de Heridas , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Zhonghua Wai Ke Za Zhi ; 41(3): 193-6, 2003 Mar.
Artículo en Chino | MEDLINE | ID: mdl-12887778

RESUMEN

OBJECTIVE: To study the effect of cGMP-dependent protein kinase (PKG) on the pathogenesis of septic shock. METHODS: Confluent endothelial cells were disintegrated and centrifugated to obtain cell lysates after being treated with LPS or PKG activator 8-Br-cGMP. PKG activity of lysates was measured with radioactive isotope label method in a reaction system of phosphorylation of specific substrate H2B by PKG, and the shape and the distribution of intracellular filamentous actin were detected by specific fluorescence staining. For the control study, the PKG specific inhibitor KT5823 was used to pretreat the endothelial cells before the administration of LPS or PKG activator 8-Br-cGMP. RESULTS: Exposure to LPS for 5, 10, 30 and 60 minutes led to a rapid time-dependent increase in endothelial PKG activity (P < 0.01 compared to the blank) and the polar distribution of intracellular filamentous actin and preincubation with KT5823 abolished these effects. 8-Br-cGMP was similar to LPS. CONCLUSIONS: The results suggested that LPS can mediate PKG activation and the stress variety of filamentous actin in the vascular endothelial cells, which probably induce the endothelial hyperpermeability after septic shock.


Asunto(s)
Permeabilidad Capilar , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , GMP Cíclico/análogos & derivados , Citoesqueleto/metabolismo , Endotelio Vascular/metabolismo , Choque Séptico/metabolismo , GMP Cíclico/farmacología , Endotelio Vascular/citología , Humanos , Lipopolisacáridos/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA