Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int Immunopharmacol ; 142(Pt A): 113028, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39226824

RESUMEN

BACKGROUND: Pulmonary hypertension is a serious disease. Emerging studies have shown that M2 macrophages play an essential role in pulmonary hypertension; however, their mechanism of action is uncertain. METHODS: Four GEO datasets were downloaded. The differentially expressed genes (DEGs) were obtained using the limma package. Simultaneously, the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm and weighted gene co-expression network analysis (WGCNA) were used to get the information about M2 macrophage-related modules. Potential key genes were obtained by intersecting DEGs with M2 macrophage-related module genes (M2MRGs), and finally the area under the curve (AUC) was calculated. Rats were exposed to hypoxia condition (10 % O2) for 4 weeks to induce PH. Subsequently, potential key genes with AUC>0.7 were analyzed by quantitative real-time polymerase chain reaction and Western blot using normoxia and hypoxia rat lungs. We knocked down EPHA3 in Raw264.7 cells and detected the protein expression of M2 macrophage markers including arginase 1 (ARG1) and interleukin 10 (IL-10), phospho-protein kinase B (P-Akt), and protein kinase B (Akt) to explore the downstream pathways of EPHA3. RESULTS: Seven potential hub genes were detected by intersecting M2MRGs and DEGs. Six genes with AUC values above 0.7 were used for further exploration. The expression of EPHA3 mRNA and protein was significantly more upregulated in rats with hypoxia than in rats with normoxia. The expression levels of IL10, ARG1, and P-Akt/Akt decreased after knocking down EPHA3. CONCLUSIONS: This study suggested that the activation of the P-Akt/Akt signaling pathway promoted by EPHA3 played an essential role in the progression of pulmonary hypertension.


Asunto(s)
Biomarcadores , Hipertensión Pulmonar , Hipoxia , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Hipoxia/genética , Ratones , Humanos , Ratas , Macrófagos/metabolismo , Macrófagos/inmunología , Masculino , Células RAW 264.7 , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arginasa/genética , Arginasa/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Perfilación de la Expresión Génica
2.
J Colloid Interface Sci ; 678(Pt C): 24-34, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39277950

RESUMEN

Small molecule prodrugs self-assembled nano-delivery systems with tumor responsive linkages are emerging as an effective platform. However, the heterogeneity of tumor microenvironment may limit the anti-tumor effect of prodrug nanomedicines with a single response module. Here, we chose disulfide bond as the response module and branched chain alcohol as the self-assembly modification module to construct a single-responsive prodrug. We also constructed a double-responsive paclitaxel prodrug combining triglyceride and disulfide bond, taking into account of the highly expressed lipase and glutathione levels in tumor cells. The results showed that the anti-tumor effect of single-responsive branched chain alcohol modified prodrug nanoparticles was inferior to triglyceride prodrug nanoparticles with dual response modules. The triglyceride structure can not only serve as a self-assembly modification module, but also serve as a response module for intelligent drug release in tumor. Such dual roles will facilitate the efficient delivery of small molecule self-assembled prodrugs to tumor sites.

3.
J Control Release ; 375: 209-235, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39244159

RESUMEN

The proven efficacy of immunotherapy in fighting tumors has been firmly established, heralding a new era in harnessing both the innate and adaptive immune systems for cancer treatment. Despite its promise, challenges such as inefficient delivery, insufficient tumor penetration, and considerable potential toxicity of immunomodulatory agents have impeded the advancement of immunotherapies. Recent endeavors in the realm of tumor prophylaxis and management have highlighted the use of living biological entities, including bacteria, oncolytic viruses, and immune cells, as a vanguard for an innovative class of live biotherapeutic products (LBPs). These LBPs are gaining recognition for their inherent ability to target tumors. However, these LBPs must contend with significant barriers, including robust immune clearance mechanisms, cytotoxicity and other in vivo adverse effects. Priority must be placed on enhancing their safety and therapeutic indices. This review consolidates the latest preclinical research and clinical progress pertaining to the exploitation of engineered biologics, spanning bacteria, oncolytic viruses, immune cells, and summarizes their integration with combination therapies aimed at circumventing current clinical impasses. Additionally, the prospective utilities and inherent challenges of the biotherapeutics are deliberated, with the objective of accelerating their clinical application in the foreseeable future.

4.
J Control Release ; 375: 47-59, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39222794

RESUMEN

In the prodrug-based self-assembled nanoassemblies, prodrugs usually consist of drug modules, response modules, and modification modules. Modification modules play a critical role in regulating the nano-assembly ability of the prodrugs. Herein, we carried out a "fatty alcoholization" strategy and chose various lengths of aliphatic alcohol chains (AC) as modification modules to construct disulfide bond bridged paclitaxel (PTX) prodrug nanoassemblies. The PTX-AC prodrugs would self-assemble into nanoassemblies (PTX-AC PNs) with higher drug loading, stability, and tumor selectivity than commercial preparations. After comprehensive exploration, we found the chain length (AC12, AC16, AC20, AC24) of modification modules affected the assembly of PTX-AC PNs, further leading to disparate in vivo fate and antitumor efficacy. With the increase of the chain length of the modification modules (from AC12 to AC20), the assembly ability of the nanoassemblies was improved, attributed to the appropriate enhancement of hydrophobic force. When the chain length was further increased to AC24, the excessive hydrophobic force will lead to the aggregation of prodrugs and weaken the assembly ability. Therefore, PTX-AC20 PNs with proper chain length may solve the paradox of efficacy and tolerance in 4 T1 breast tumor owing to their optimal nano-assembly stability and modest redox-sensitivity. In short, this work highlighted the importance of screening optimal modification modules in developing prodrug nanoassemblies.

5.
ACS Nano ; 18(37): 25657-25670, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39215751

RESUMEN

The potent CRISPR-Cas9 technology can correct genes in human mutated cells to achieve the treatment of multiple diseases, but it lacks safe and effective delivery systems. Herein, we proposed an oral microto-nano genome-editing system aiming at the enteric excessive level of TNF-α for specific gene therapy of inflammatory bowel disease (IBD). This editing system facilitated the assembly of Cas9/sgRNA ribonucleoprotein (RNP) into nanoclusters (NCs) through the bridging of disulfide bonds. RNP-NCs were subsequently encapsulated within inflammatory cell-targeted lipopolysaccharide-deleted outer membrane vesicles (dOMVs) sourced from Escherichia coli Nissle 1917, which were further shielded by an outer layer of calcium alginate microspheres (CAMs). By leveraging the protection effect of CAMs, the oral administration system withstood gastric acid degradation upon entry into the stomach, achieving targeted delivery to the intestines with high efficiency. As the pH gradually rose, the microscale CAMs swelled and disintegrated, releasing nanoscale RNP-NCs encapsulated in dOMVs into the intestines. These RNP-NCs@dOMVs could traverse the mucosal barrier and target inflammatory macrophages where conditionally activated Cas9/sgRNA RNPs effectively perform genomic editing of TNF-α within the nucleus. Such oral microto-nano genome-editing systems represent a promising translational platform for the treatment of IBD.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Terapia Genética , Enfermedades Inflamatorias del Intestino , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/genética , Animales , Ratones , Administración Oral , Humanos , Alginatos/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Factor de Necrosis Tumoral alfa/metabolismo , Escherichia coli/genética
6.
Int J Pharm ; 662: 124496, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39033943

RESUMEN

Chemo-photodynamic synergistic therapy (CPST) holds tremendous promise for treating cancers. Unfortunately, existing CPST applications suffer from complex synthetic procedures, low drug co-loading efficiency, and carrier-related toxicity. To address these issues, we have developed a supramolecular carrier-free self-sensitized nanoassemblies by co-assembling podophyllotoxin (PTOX) and chlorin e6 (Ce6) to enhance CPST efficiency against tumors. The nanoassemblies show stable co-assembly performance in simulative vivo neural environment (∼150 nm), with high co-loading ability for PTOX (72.2 wt%) and Ce6 (27.8 wt%). In vivo, the nanoassemblies demonstrate a remarkable ability to accumulate at tumor sites by leveraging the enhanced permeability and retention (EPR) effect. The disintegration of nanoassemblies following photosensitizer bioactivation triggered by the acidic tumor environment effectively resolves the challenge of aggregation-caused quenching (ACQ) effect. Upon exposure to external light stimulation, the disintegrated nanoassemblies not only illuminate cancer cells synergistically but also exert a more potent antitumor effect when compared with PTOX and Ce6 administered alone. This self-sensitized strategy represents a significant step forward in CPST, offering a unique co-delivery paradigm for clinic cancer treatment.


Asunto(s)
Clorofilidas , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Podofilotoxina , Porfirinas , Fotoquimioterapia/métodos , Porfirinas/administración & dosificación , Porfirinas/química , Animales , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Humanos , Línea Celular Tumoral , Nanopartículas/química , Podofilotoxina/administración & dosificación , Podofilotoxina/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Femenino
7.
J Colloid Interface Sci ; 669: 731-739, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38735255

RESUMEN

HYPOTHESIS: Hydrophilic cationic drugs such as mitoxantrone hydrochloride (MTO) pose a significant delivery challenge to the development of nanodrug systems. Herein, we report the use of a hydrophobic ion-pairing strategy to enhance the nano-assembly of MTO. EXPERIMENTS: We employed biocompatible sodium cholesteryl sulfate (SCS) as a modification module to form stable ion pairs with MTO, which balanced the intermolecular forces and facilitated nano-assembly. PEGylated MTO-SCS nanoassemblies (pMS NAs) were prepared via nanoprecipitation. We systematically evaluated the effect of the ratio of the drug module (MTO) to the modification module (SCS) on the nanoassemblies. FINDINGS: The increased lipophilicity of MTO-SCS ion pair could significantly improve the encapsulation efficiency (∼97 %) and cellular uptake efficiency of MTO. The pMS NAs showed prolonged blood circulation, maintained the same level of tumor antiproliferative activity, and exhibited reduced toxicity compared with the free MTO solution. It is noteworthy that the stability, cellular uptake, cytotoxicity, and in vivo pharmacokinetic behavior of the pMS NAs increased in proportion to the molar ratio of SCS to MTO. This study presents a self-assembly strategy mediated by ion pairing to overcome the challenges commonly associated with the poor assembly ability of hydrophilic cationic drugs.


Asunto(s)
Antineoplásicos , Ésteres del Colesterol , Interacciones Hidrofóbicas e Hidrofílicas , Mitoxantrona , Mitoxantrona/química , Mitoxantrona/farmacología , Mitoxantrona/farmacocinética , Humanos , Animales , Ésteres del Colesterol/química , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones , Proliferación Celular/efectos de los fármacos , Cationes/química , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Nanopartículas/química , Propiedades de Superficie , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Polietilenglicoles/química
8.
Adv Healthc Mater ; 13(22): e2400809, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38752756

RESUMEN

Chemodynamic therapy (CDT) has emerged as a transformative paradigm in the realm of reactive oxygen species -mediated cancer therapies, exhibiting its potential as a sophisticated strategy for precise and effective tumor treatment. CDT primarily relies on metal ions and hydrogen peroxide to initiate Fenton or Fenton-like reactions, generating cytotoxic hydroxyl radicals. Its notable advantages in cancer treatment are demonstrated, including tumor specificity, autonomy from external triggers, and a favorable side-effect profile. Recent advancements in nanomedicine are devoted to enhancing CDT, promising a comprehensive optimization of CDT efficacy. This review systematically elucidates cutting-edge achievements in chemodynamic nanotherapeutics, exploring strategies for enhanced Fenton or Fenton-like reactions, improved tumor microenvironment modulation, and precise regulation in energy metabolism. Moreover, a detailed analysis of diverse CDT-mediated combination therapies is provided. Finally, the review concludes with a comprehensive discussion of the prospects and intrinsic challenges to the application of chemodynamic nanotherapeutics in the domain of cancer treatment.


Asunto(s)
Nanomedicina , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Microambiente Tumoral/efectos de los fármacos , Nanomedicina/métodos , Animales , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Peróxido de Hidrógeno/química , Nanopartículas/química , Nanopartículas/uso terapéutico
9.
Nano Lett ; 24(1): 394-401, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147432

RESUMEN

The prodrug-based nanoassemblies offer an alternative to settle the deficiencies of traditional chemotherapy drugs. In this nanosystem, prodrugs typically comprise drug modules, modification modules, and response modules. The response modules are crucial for facilitating the accurate conversion of prodrugs at specific sites. In this work, we opted for differentiated disulfide bonds as response modules to construct docetaxel (DTX) prodrug nanoassemblies. Interestingly, a subtle change in response modules leads to a "U-shaped" conversion rate of DTX-prodrug nanoassemblies. Prodrug nanoassemblies with the least carbon numbers between the disulfide bond and ester bond (PDONα) offered the fastest conversion rate, resulting in powerful treatment outcomes with some unavoidable toxic effects. PDONß, with more carbon numbers, possessed a slow conversion rate and poor antitumor efficacy but good tolerance. With most carbon numbers in PDONγ, it demonstrated a moderate conversion rate and antitumor effect but induced a risk of lethality. Our study explored the function of response modules and highlighted their importance in prodrug development.


Asunto(s)
Antineoplásicos , Nanopartículas , Profármacos , Docetaxel , Profármacos/química , Línea Celular Tumoral , Disulfuros/química , Carbono , Antineoplásicos/farmacología , Nanopartículas/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-38082030

RESUMEN

Photodynamic therapy (PDT), extensively explored as a non-invasive and spatio-temporal therapeutic modality for cancer treatment, encounters challenges related to the brief half-life and limited diffusion range of singlet oxygen. Lipid peroxides, formed through the oxidation of polyunsaturated fatty acids by singlet oxygen, exhibit prolonged half-life and potent cytotoxicity. Herein, we employed small molecule co-assembly technology to create nanoassemblies of pyropheophorbide a (PPa) and docosahexaenoic acid (DHA) to bolster PDT. DHA, an essential polyunsaturated fatty acid, co-assembled with PPa to generate nanoparticles (PPa@DHA NPs) without the need for additional excipients. To enhance the stability of these nanoassemblies, we introduced 20% DSPE-PEG2k as a stabilizing agent, leading to the formation of PPa@DHA PEG2k NPs. Upon laser irradiation, PPa-produced singlet oxygen swiftly oxidized DHA, resulting in the generation of cytotoxic lipid peroxides. This process significantly augmented the therapeutic efficiency of PDT. Consequently, tumor growth was markedly suppressed, attributed to the sensitizing and amplifying impact of DHA on PDT in a 4T1 tumor-bearing mouse model. In summary, this molecule-engineered nanoassembly introduces an innovative co-delivery approach to enhance PDT with polyunsaturated fatty acids.

11.
Biomed Pharmacother ; 167: 115577, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37757494

RESUMEN

Gut microbiota can coordinate with different tissues and organs to maintain human health, which derives the concept of the gut-X axis. Conversely, the dysbiosis of gut microbiota leads to the occurrence and development of various diseases, such as neurological diseases, liver diseases, and even cancers. Therefore, the modulation of gut microbiota offers new opportunities in the field of medicines. Antibiotics, probiotics or other treatments might restore unbalanced gut microbiota, which effects do not match what people have expected. Recently, nanomedicines with the high targeting ability and reduced toxicity make them an appreciative choice for relieving disease through targeting gut-X axis. Considering this paradigm-setting trend, the current review summarizes the advancements in gut microbiota and its related nanomedicines. Specifically, this article introduces the immunological effects of gut microbiota, summarizes the gut-X axis-associated diseases, and highlights the nanotherapeutics-mediated treatment via remolding the gut-X axis. Moreover, this review also discusses the challenges in studies related to nanomedicines targeting the gut microbiota and offers the future perspective, thereby aiming at charting a course toward clinic.

12.
J Control Release ; 362: 151-169, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633361

RESUMEN

Nitric oxide (NO) is a gaseous molecule endowed with diverse biological functions, offering vast potential in the realm of cancer treatment. Considerable efforts have been dedicated to NO-based cancer therapy owing to its good biosafety and high antitumor activity, as well as its efficient synergistic therapy with other antitumor modalities. However, delivering this gaseous molecule effectively into tumor tissues poses a significant challenge. To this end, nano drug delivery systems (nano-DDSs) have emerged as promising platforms for in vivo efficient NO delivery, with remarkable achievements in recent years. This review aims to provide a summary of the emerging NO-driven antitumor nanotherapeutics. Firstly, the antitumor mechanism and related clinical trials of NO therapy are detailed. Secondly, the latest research developments in the stimulation of endogenous NO synthesis are presented, including the regulation of nitric oxide synthases (NOS) and activation of endogenous NO precursors. Moreover, the emerging nanotherapeutics that rely on tumor-specific delivery of NO donors are outlined. Additionally, NO-driven combined nanotherapeutics for multimodal cancer theranostics are discussed. Finally, the future directions, application prospects, and challenges of NO-driven nanotherapeutics in clinical translation are highlighted.

13.
Front Endocrinol (Lausanne) ; 14: 1179521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448464

RESUMEN

Background: Evidence for a relationship between oxidative stress and osteoporotic fractures in humans is limited. Fluorescent oxidation products (FlOPs, excitation/emission wavelengths 320/420nm denoted FlOP_320; 360/420nm [FlOP_360]; and 400/475nm [FlOP_400]) are global biomarkers of oxidative stress, and reflect oxidative damage to proteins, phospholipids, and nucleic acids. We investigated the association between FlOPs and a recent osteoporotic fracture. Methods: We conducted a case-control study in a Chinese population aged 50 years or older. A recent osteoporotic fracture in the cases was confirmed by x-ray. Cases were matched with community-based non-fracture controls (1:2 ratio) for age (± 4 years) and sex. In addition, we conducted a sensitivity unmatched case-control study which included all fracture cases and all eligible non-fracture controls prior to matching. Plasma FlOPs were measured with a fluorescent microplate reader. We used unconditional logistic regression to analyze the association between FlOPs (per 1-SD increase in logarithmic scale) and fracture; odds ratios (OR) and 95% confidence intervals (95% CI) were reported. Results: Forty-four cases and 88 matched controls (mean age: 68.2 years) were included. After covariate adjustment (i.e., body mass index, physical activity, and smoking), higher FlOP_360 (OR = 1.85; 95% CI = 1.03 - 3.34) and FlOP_400 (OR = 13.29; 95% CI = 3.48 - 50.69) levels, but not FlOP_320 (OR = 0.56; 95% CI = 0.27 - 1.15), were associated with increased fracture risk. Subgroup analyses by fracture site and unmatched case-control study found comparable associations of FlOP_360 and FlOP_400 with hip and non-hip fractures. Conclusions: Higher FlOP_360 and FlOP_400 levels were associated with increased risk of fracture, and this association was comparable for hip and non-hip fractures. Prospective studies are warranted to confirm this finding.


Asunto(s)
Fracturas de Cadera , Fracturas Osteoporóticas , Humanos , Anciano , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/etiología , Estudios de Casos y Controles , Estrés Oxidativo , Fracturas de Cadera/epidemiología , Biomarcadores
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166794, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37356737

RESUMEN

N-myc downstream regulated gene 1 (NDRG1) has recently drawn increasing attention because of its involvement in angiogenesis, cell proliferation, and differentiation. We used in vitro [human pulmonary artery smooth muscle cells (hPASMCs)] and in vivo (rat) models under hypoxic conditions and found a vital role of NDRG1 in reducing apoptosis and increasing proliferation and migration by overexpressing and knocking down NDRG1. We also proved that hypoxia induced the protein expression of dynamin-related protein 1 (DRP1) and stimulated The phosphatidylinositol-3-kinase (PI3K)/ Protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways, and these effects were reversed by NDRG1 knockdown. The relationship between NDRG1 and DRP1 and the PI3K/Akt/mTOR pathway was further evaluated by adding mdivi-1 (DRP1 inhibitor) or LY294002 (PI3K inhibitor). NDRG1 was found to regulate the proliferation, apoptosis, and migration of hypoxia-treated hPASMCs via DRP1 and PI3K/Akt/mTOR signaling pathways. We explored the upstream regulators of NDRG1 using in vivo and in vitro hypoxia models. Hypoxia was found to upregulate and downregulate KLF transcription factor 4 (KLF4) protein expression in the cytoplasm and nucleus, respectively. Further, we showed that KLF4 regulated the proliferation and migration of hypoxia-treated hPASMCs via NDRG1. These results indicated a link between KLF4, NDRG1, and DRP1 for the first time, providing new ideas for treating hypoxic pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Animales , Humanos , Ratas , Hipoxia de la Célula/fisiología , Dinaminas/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/genética , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
15.
Nano Lett ; 23(8): 3549-3557, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053460

RESUMEN

Prodrug-based nanoassemblies have been developed to solve the bottlenecks of chemotherapeutic drugs. The fabricated prodrugs usually consist of active drug modules, response modules, and modification modules. Among three modules, the response modules play a vital role in controlling the intelligent drug release at tumor sites. Herein, various locations of disulfide bond linkages were selected as response modules to construct three Docetaxel (DTX) prodrugs. Interestingly, the small structural difference caused by the length of response modules endowed corresponding prodrug nanoassemblies with unique characteristic. α-DTX-OD nanoparticles (NPs) possessed the advantages of high redox-responsiveness due to their shortest linkages. However, they were too sensitive to retain the intact structure in the blood circulation, leading to severe systematic toxicity. ß-DTX-OD NPs significantly improved the pharmacokinetics of DTX but may induce damage to the liver. In comparison, γ-DTX-OD NPs with the longest linkages greatly ameliorated the delivery efficiency of DTX as well as improved DTX's tolerance dose.


Asunto(s)
Antineoplásicos , Nanopartículas , Profármacos , Docetaxel , Profármacos/química , Nanopartículas/química , Liberación de Fármacos , Antineoplásicos/química , Línea Celular Tumoral , Portadores de Fármacos/química
16.
Pharm Biol ; 60(1): 1591-1605, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35944298

RESUMEN

CONTEXT: Toddalolactone, the main component of Toddalia asiatica (L.) Lam. (Rutaceae), has anticancer, antihypertension, anti-inflammatory, and antifungal activities. OBJECTIVE: This study investigated the metabolic characteristics of toddalolactone. MATERIALS AND METHODS: Toddalolactone metabolic stabilities were investigated by incubating toddalolactone (20 µM) with liver microsomes from humans, rabbits, mice, rats, dogs, minipigs, and monkeys for 0, 30, 60, and 90 min. The CYP isoforms involved in toddalolactone metabolism were characterized based on chemical inhibition studies and screening assays. The effects of toddalolactone (0, 10, and 50 µM) on CYP1A1 and CYP3A5 protein expression were investigated by immunoblotting. After injecting toddalolactone (10 mg/kg), in vivo pharmacokinetic profiles using six Sprague-Dawley rats were investigated by taking 9-time points, including 0, 0.25, 0.5, 0.75, 1, 2, 4, 6 and 8 h. RESULTS: Monkeys showed the greatest metabolic capacity in CYP-mediated and UGT-mediated reaction systems with short half-lives (T1/2) of 245 and 66 min, respectively, while T1/2 of humans in two reaction systems were 673 and 83 min, respectively. CYP1A1 and CYP3A5 were the major CYP isoforms involved in toddalolactone biotransformation. Induction of CYP1A1 protein expression by 50 µM toddalolactone was approximately 50% greater than that of the control (0 µM). Peak plasma concentration (Cmax) for toddalolactone was 0.42 µg/mL, and Tmax occurred at 0.25 h post-dosing. The elimination t1/2 was 1.05 h, and the AUC0-t was 0.46 µg/mL/h. CONCLUSIONS: These findings demonstrated the significant species differences of toddalolactone metabolic profiles, which will promote appropriate species selection in further toddalolactone studies.


Asunto(s)
Citocromo P-450 CYP3A , Inhibidores Enzimáticos del Citocromo P-450 , Animales , Cumarinas , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/farmacología , Citocromo P-450 CYP3A/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Humanos , Ratones , Microsomas Hepáticos , Conejos , Ratas , Ratas Sprague-Dawley , Porcinos , Porcinos Enanos/metabolismo
17.
Biosci Biotechnol Biochem ; 84(4): 661-669, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31829112

RESUMEN

Artocarpin has shown anti-inflammation and anticancer activities. However, the metabolism differences among different species have not been reported. In this work, we used liver microsomes to explore the metabolic characteristics and possible metabolites of artocarpin among different species. The structures of six metabolites were characterized by LC-MS/MS, and hydroxylated artocarpin was the main metabolite. Enzyme kinetics and depletion studies of artocarpin among different species proved that artocarpin metabolism exhibited significant species differences; rats and monkeys showed a great metabolic ability to artocarpin, and minipigs showed the highest similarity to humans. The in vivo hepatic clearances of artocarpin in rats and humans were predicted that artocarpin was classified as a high-clearance drug in humans and rats. The glucuronidation assay of artocarpin in different liver microsomes also proved that artocarpin metabolism showed significant species difference. These findings will support further pharmacological or toxicological research on artocarpin.Abbreviations: UGT: UDP-glucuronosyltransferase; CYP: cytochrome P450; LC-MS/MS: liquid chromatography-tandem mass spectrometry; HPLC: high-performance liquid chromatography; HLMs: human liver microsomes; MLMs: monkey liver microsomes; RAMs: rabbit liver microsomes; RLMs: rat liver microsomes; DLMs: dog liver microsomes; PLMs: minipig liver microsomes; Vmax: maximum velocity; Km: Michaelis constant; CLint: intrinsic clearance; CLH: hepatic clearance; QH: hepatic blood flow.


Asunto(s)
Lectinas de Unión a Manosa/metabolismo , Microsomas Hepáticos/metabolismo , Lectinas de Plantas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Glucuronosiltransferasa/metabolismo , Humanos , Cinética , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/farmacocinética , Lectinas de Plantas/química , Lectinas de Plantas/farmacocinética , Especificidad de la Especie , Espectrometría de Masas en Tándem
18.
Int J Oncol ; 55(6): 1397, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31545403

RESUMEN

Subsequently to the publication of this article, the authors have realized that the order of the corresponding authors in the author list should have been reversed: Wenshu Chai was listed as the penultimate author on the paper, whereas Xianbao Shi should have been featured before Wenshu Chai. Therefore, the authors and affiliations for this paper should have appeared as follows: LINA SHAN1, MINJIE ZHAO1, YA LU1, HONGJUAN NING1, SHUMAN YANG2, YONGGUI SONG3, XIANBAO SHI1 and WENSHU CHAI1 1Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001; 2School of Public Health, Jilin University, Changchun, Jilin 130021; 3School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China Correspondence to: Professor Xianbao Shi or Professor Wenshu Cai, Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, 5 Renmin Street, Guta, Jinzhou, Liaoning 121001, P.R. China The authors regret that this error was not corrected prior to the publication of the above article, and apologize to the readership for any inconvenience caused. [the original article was published in International Journal of Oncology 55: 257­266, 2019; DOI: 10.3892/ijo.2019.4805].

19.
Chem Res Toxicol ; 32(10): 2125-2134, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31515991

RESUMEN

Auriculasin has a wide range of pharmacological effects, including anticancer and anti-inflammatory effects. In this work, we explored the metabolic characteristics and inhibitory effect of auriculasin against cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes in vitro. Auriculasin inhibited UGT1A6, UGT1A8, UGT1A10, UGT2B7, CYP2C9, and CYP3A4 strongly at a concentration of 100 µM. Different species showed significant differences in auriculasin metabolism, and metabolic characteristics were similar between pig and human. We identified seven metabolites, and hydroxylated auriculasin was the main metabolite. In addition, CYP2D6, CYP2C9, CYP2C19, and CYP2C8 were the major CYP isoforms involved in the metabolism of auriculasin. Molecular docking studies showed that noncovalent interactions between auriculasin and the CYPs are dominated by hydrogen bonding, π-π stacking, and hydrophobic interactions. Our in vitro study provides insights into the pharmacological and toxicological mechanisms of auriculasin.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Glucuronosiltransferasa/antagonistas & inhibidores , Isoflavonas/metabolismo , Isoflavonas/toxicidad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Glucuronosiltransferasa/metabolismo , Humanos , Isoflavonas/química , Isoflavonas/farmacología , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Relación Estructura-Actividad
20.
Int J Oncol ; 55(1): 257-266, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31115500

RESUMEN

Lung cancer is the most common and most lethal type of cancer. A sustained proliferative capacity is one of the hallmarks of cancer, and microtubules serve an important role in maintaining a sustained cell cycle. Therefore, understanding the regulation of microtubule proteins in the cell cycle is important for tumor prevention and treatment. Centromere protein E (CENPE) is a human kinetochore protein that is highly expressed in the G2/M phase of the cell cycle. The present study identified that CENPE is highly expressed in lung adenocarcinoma (LUAD) tissues. Following knockdown of CENPE expression, the proliferation of lung cancer cells was inhibited. In addition, it was revealed that forkhead box M1 (FOXM1) is significantly correlated with CENE expression. Following FOXM1­knockdown, the expression level of CENPE was decreased and the proliferation of lung cancer cells was inhibited. Overexpression of FOXM1 promoted the expression of CENPE and the proliferation of lung cancer cells. A chromatin immunoprecipitation assay identified that FOXM1 binds directly to the promoter region of CENPE. Therefore, the present data demonstrated that CENPE can promote the proliferation of LUAD cells and is directly regulated by FOXM1.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteína Forkhead Box M1/metabolismo , Neoplasias Pulmonares/patología , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA