Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioconjug Chem ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360857

RESUMEN

Biocompatible cross-coupling reactions enable the efficient covalent attachment of large biomolecules at near-stoichiometric ratios, ensuring the stability and integrity of the resulting products. We present an affinity-based peptide platform utilizing coiled coils containing reactive side chains for proximity-driven protein cross-coupling in the presence of a cross-linking agent. This platform supports both chemical synthesis and recombinant expression, using canonical amino acids to generate reactive affinity tags. Employing the E3/R3 coiled coil pair as a scaffold, we design four complementary coils with cysteine residues as cross-linking sites, achieving >90% conversion to covalent heterodimeric coupling products using 3,4-dibromomaleimide. Equimolar mixtures of proteins with reactive coils at their termini yield near-quantitative heterodimeric cross-coupling products. The strategic selection of complementary coiled coil pairs and cross-linking agents enables orthogonal assembly of macromolecules with diverse architectures. This method offers a versatile approach for creating covalent fusion proteins, enhancing their stability and functionality for applications in chemical biology, biotechnology, and medicine.

2.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151945

RESUMEN

Ineffective endometrial matrix remodeling, a key factor in infertility, impedes embryo implantation in the uterine wall. Our study reveals the cellular and molecular impact of human collagenase-1 administration in mouse uteri, demonstrating enhanced embryo implantation rates. Collagenase-1 promotes remodeling of the endometrial ECM, degrading collagen fibers and proteoglycans. This process releases matrix-bound bioactive factors (e.g., VEGF, decorin), facilitating vascular permeability and angiogenesis. Collagenase-1 elevates embryo implantation regulators, including NK cell infiltration and the key cytokine LIF. Remarkably, uterine tissue maintains structural integrity despite reduced endometrial collagen fiber tension. In-utero collagenase-1 application rescues implantation in heat stress and embryo transfer models, known for low implantation rates. Importantly, ex vivo exposure of human uterine tissue to collagenase-1 induces collagen de-tensioning and VEGF release, mirroring remodeling observed in mice. Our research highlights the potential of collagenases to induce and orchestrate cellular and molecular processes enhancing uterine receptivity for effective embryo implantation. This innovative approach underscores ECM remodeling mechanisms critical for embryo implantation.


Asunto(s)
Colagenasas , Implantación del Embrión , Útero , Femenino , Animales , Ratones , Colagenasas/metabolismo , Humanos , Útero/metabolismo , Matriz Extracelular/metabolismo , Endometrio/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Embarazo , Transferencia de Embrión/métodos , Colágeno/metabolismo , Ratones Endogámicos C57BL
3.
bioRxiv ; 2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37333362

RESUMEN

Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness. Strikingly, this change in tissue state at metaplasia was already accompanied by appearance of fibroblasts with characteristics of carcinoma-associated fibroblasts and of an NK cell-associated immunosuppressive microenvironment. Thus, Barrett's esophagus progresses as a coordinated multi-component system, supporting treatment paradigms that go beyond targeting cancerous cells to incorporating stromal reprogramming.

4.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147779

RESUMEN

Hyaline fibromatosis syndrome (HFS), resulting from ANTXR2 mutations, is an ultra-rare disease that causes intestinal lymphangiectasia and protein-losing enteropathy (PLE). The mechanisms leading to the gastrointestinal phenotype in these patients are not well defined. We present two patients with congenital diarrhea, severe PLE and unique clinical features resulting from deleterious ANTXR2 mutations. Intestinal organoids were generated from one of the patients, along with CRISPR-Cas9 ANTXR2 knockout, and compared with organoids from two healthy controls. The ANTXR2-deficient organoids displayed normal growth and polarity, compared to controls. Using an anthrax-toxin assay we showed that the c.155C>T mutation causes loss-of-function of ANTXR2 protein. An intrinsic defect of monolayer formation in patient-derived or ANTXR2KO organoids was not apparent, suggesting normal epithelial function. However, electron microscopy and second harmonic generation imaging showed abnormal collagen deposition in duodenal samples of these patients. Specifically, collagen VI, which is known to bind ANTXR2, was highly expressed in the duodenum of these patients. In conclusion, despite resistance to anthrax-toxin, epithelial cell function, and specifically monolayer formation, is intact in patients with HFS. Nevertheless, loss of ANTXR2-mediated signaling leads to collagen VI accumulation in the duodenum and abnormal extracellular matrix composition, which likely plays a role in development of PLE.


Asunto(s)
Colágeno/metabolismo , Duodeno/metabolismo , Síndrome de Fibromatosis Hialina/metabolismo , Enteropatías Perdedoras de Proteínas/metabolismo , Receptores de Péptidos/genética , Antígenos Bacterianos/química , Toxinas Bacterianas/química , Sistemas CRISPR-Cas , Consanguinidad , Diarrea/congénito , Matriz Extracelular/metabolismo , Humanos , Síndrome de Fibromatosis Hialina/genética , Lactante , Masculino , Microscopía Electrónica , Mutación , Fenotipo , Enteropatías Perdedoras de Proteínas/genética , Receptores de Péptidos/deficiencia , Transducción de Señal
5.
J Exp Med ; 213(11): 2315-2331, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27697834

RESUMEN

Tumor-associated macrophages (TAMs) promote tumor development, invasion, and dissemination by various mechanisms. In this study, using an orthotopic colorectal cancer (CRC) model, we found that monocyte-derived TAMs advance tumor development by the remodeling of its extracellular matrix (ECM) composition and structure. Unbiased transcriptomic and proteomic analyses of (a) TAM-abundant and -deficient tumor tissues and (b) sorted tumor-associated and -resident colonic macrophage subpopulations defined a distinct TAM-induced ECM molecular signature composed of an ensemble of matricellular proteins and remodeling enzymes they provide to the tumor microenvironment. Remarkably, many of these ECM proteins are specifically increased in human CRC versus healthy colon. Specifically, we demonstrate that although differentiating into TAMs, monocytes up-regulate matrix-remodeling programs associated with the synthesis and assembly of collagenous ECM, specifically collagen types I, VI, and XIV. This finding was further established by advanced imaging showing that TAMs instruct the deposition, cross-linking, and linearization of collagen fibers during tumor development, especially at areas of tumor invasiveness. Finally, we show that cancer-associated fibroblasts are significantly outnumbered by TAMs in this model and that their expression of collagen XIV and I is reduced by TAM deficiency. Here, we outline a novel TAM protumoral function associated with building of the collagenous ECM niche.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Macrófagos/patología , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/ultraestructura , Modelos Animales de Enfermedad , Matriz Extracelular/ultraestructura , Proteínas de la Matriz Extracelular/metabolismo , Colágenos Fibrilares/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteómica , Receptores CCR2/deficiencia , Receptores CCR2/metabolismo , Transcriptoma/genética , Microambiente Tumoral
6.
PLoS One ; 8(10): e78472, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194938

RESUMEN

Occurrence of DNA damage in a cell activates the DNA damage response, a survival mechanism that ensures genomics stability. Two key members of the DNA damage response are the tumor suppressor p53, which is the most frequently mutated gene in cancers, and MDC1, which is a central adaptor that recruits many proteins to sites of DNA damage. Here we characterize the in vitro interaction between p53 and MDC1 and demonstrate that p53 and MDC1 directly interact. The p53-MDC1 interaction is mediated by the tandem BRCT domain of MDC1 and the C-terminal domain of p53. We further show that both acetylation of lysine 382 and phosphorylation of serine 392 in p53 enhance the interaction between p53 and MDC1. Additionally, we demonstrate that the p53-MDC1 interaction is augmented upon the induction of DNA damage in human cells. Our data suggests a new role for acetylation of lysine 382 and phosphorylation of serine 392 in p53 in the cellular stress response and offers the first evidence for an interaction involving MDC1 that is modulated by acetylation.


Asunto(s)
Daño del ADN/genética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Humanos , Técnicas In Vitro , Lisina/metabolismo , Fosforilación , Conformación Proteica , Serina/metabolismo , Proteína p53 Supresora de Tumor/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA